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Supplementary Note 1. Definition and Records of Mechanical Energy Absorbing Efficiency  

 The energy absorbing efficiency Ks of a material or structure in compression can be 
calculated by dividing the amount of energy absorbed before surpassing a stress threshold σt by 
the maximum energy that could be absorbed below that threshold, i.e. compressing to an 
engineering strain of 1 while maintaining an engineering stress σ = σt (Figure 1a). Equivalently, 
Ks can also be calculated directly from force-displacement data by calculating the amount of 
energy absorbed before surpassing a force threshold by the maximum amount of energy that could 
be absorbed below that threshold, i.e. compressing until the displacement of the component equals 
its initial height while maintaining a force equal to the threshold force. For most structures, Ks 
reaches its maximum energy absorbing efficiency Ks* at an optimum threshold stress σt*. This 
single point, (σt*, Ks*) can be used to describe the ideal operating performance of a structure or 
material. To illustrate common and superlative values of Ks*, a summary of literature values is 
shown graphically in Figure S1. The sources of these points are given in Table S1. Values of σt* 
and Ks* not directly reported were computed based on reported force-displacement or stress-strain 
plots. Included on this plot are two values taken from this work.  

 

Fig. S1 | Common and superlative structures and materials. Synthetic structures (blue diamond) 
and natural materials (green triangle) gathered from literature, with superlative plastic and 
hyperelastic generalized cylindrical shells (GCS-this study) components (red circle). 

 

σt* (MPa) Ks* (%) Material origin Reference 
8.50×10-3 38.5 Synthetic https://doi.org/10.1016/j.matdes.2017.11.037 
1.00×10-2 32.0 Synthetic https://doi.org/10.1016/j.matdes.2017.11.037 
2.85×10-2 63.2 Synthetic This work – ADTS ID 22335 
5.55×10-2 44.4 Synthetic https://doi.org/10.1016/j.matdes.2017.11.037 
9.17×10-2 37.4 Synthetic https://doi.org/10.1016/j.matdes.2017.11.037 
6.47×10-1 29.7 Synthetic https://doi.org/10.1002/admt.201800419 
9.01×10-1 47.3 Synthetic https://doi.org/10.1002/admt.201800419 
1.01 68.1 Synthetic https://doi.org/10.1177/0021955X06063519 
1.04 36.9 Synthetic https://doi.org/10.1016/j.actamat.2004.05.039 
1.16 75.2 Synthetic This work – ADTS ID 21285 
1.47 33.5 Natural https://doi.org/10.1016/j.jmbbm.2019.103603 
2.42 32.3 Synthetic https://doi.org/10.1177/0021955X06063519 
2.45 70.9 Natural https://doi.org/10.1016/S0167-6636(02)00268-5 
3.08 58.2 Synthetic https://doi.org/10.1016/j.msea.2004.03.051 
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3.89 59.8 Synthetic https://doi.org/10.1177/0021955X06063519 
4.07 32.4 Synthetic https://doi.org/10.1177/0021955X06063519 
4.30 52.9 Synthetic https://doi.org/10.1016/j.msea.2004.03.051 
4.76 46.8 Synthetic https://doi.org/10.1016/j.actamat.2004.05.039 
5.53 44.5 Synthetic https://doi.org/10.1016/j.ijimpeng.2010.03.007 
6.47 71.8 Natural https://doi.org/10.1016/S0167-6636(02)00268-5 
6.88 44.2 Synthetic https://doi.org/10.1177/0021955X06063519 
9.99 41.5 Synthetic https://doi.org/10.2140/jomms.2013.8.65 
1.01×101 45.0 Synthetic https://doi.org/10.1016/j.actamat.2004.05.039 
1.17×101 23.8 Synthetic https://doi.org/10.1002/admt.201800419 
1.21×101 39.4 Synthetic https://doi.org/10.1177/0731684419868018 
1.24×101 47.9 Synthetic https://doi.org/10.1177/0731684419868018 
1.34×101 45.6 Synthetic https://doi.org/10.1177/0731684419868018 
1.42×101 43.2 Synthetic https://doi.org/10.1177/0731684419868018 
1.46×101 52.8 Synthetic https://doi.org/10.1177/0731684419868018 
1.50×101 56.1 Natural https://doi.org/10.1016/S0167-6636(02)00268-5 
1.52×101 51.9 Synthetic https://doi.org/10.1177/0731684419868018 
1.74×101 53.3 Synthetic https://doi.org/10.1177/0731684419868018 
1.92×101 50.3 Synthetic https://doi.org/10.1177/0731684419868018 
1.98×101 47.6 Synthetic https://doi.org/10.1177/0731684419868018 
1.98×101 33.2 Synthetic https://doi.org/10.1002/admt.201800419 
2.22×101 47.7 Synthetic https://doi.org/10.2140/jomms.2013.8.65 
2.22×101 46.1 Synthetic https://doi.org/10.1177/0731684419868018 
2.25×101 47.5 Synthetic https://doi.org/10.2140/jomms.2013.8.65 
2.29×101 53.5 Natural https://doi.org/10.1016/S0167-6636(02)00268-5 
2.69×101 45.8 Synthetic https://doi.org/10.2140/jomms.2013.8.65 
2.86×101 32.1 Synthetic https://doi.org/10.1177/0021955X06063519 
3.88×101 45.8 Natural https://doi.org/10.1016/S0167-6636(02)00268-5 
5.84×101 34.3 Synthetic https://doi.org/10.1016/j.ijsolstr.2015.02.020 
8.86×101 53.6 Synthetic https://doi.org/10.1016/j.msea.2004.03.051 
1.40×102 51.5 Synthetic https://doi.org/10.1016/j.msea.2004.03.051 

Table S1 | Common and superlative structures and materials 

 

Supplementary Note 2. Process for Converting Force-Displacement into Stress-Strain 

When converting from force-displacement curves to engineering stress-engineering strain 
curves (simply called stress and strain hereafter), it is necessary to define the area of the component 
and its height. For traditional materials, this process is straightforward as it amounts to defining 
the cross-sectional area of the component under study. However, for more complex structures, the 
area of the component is less clear. Here, we define the cross-sectional area to be the amount of 
area that is required per component to tile the component infinitely on a plane. To calculate this 
algorithmically, we used the following steps (illustrated graphically in Figure S2): 

1. Find the maximum radius rmax of the component by finding the maximum of the radius r at all 
heights z and azimuthal angles ϕ, as defined in Equation (1) in the Methods.  

2. Enclose the component with a cylinder with radius rmax (Figure S2b). 
3. Enclose the component in a hexagonal prism that circumscribes the cylinder (Figure S2c). 
4. The area of the hexagonal prism is used as an estimate of the cross-sectional area needed to 

tile the component on a plane. 
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Although some designs may be more closely packed in a square lattice, most are more closely 
packed using the hexagonal approach (Figure S2d) due to the applied linear and sinusoidal twists, 
and this approach is invariant of the rotational orientation of the design. Therefore, this hexagonal 
packing approach was used to estimate the cross-sectional area of all designs. 

 

Fig. S2 | Calculating the effective area of GCS designs. a-b, To calculate the effective cross-
sectional area of a design, it is fit into a cylinder based on its maximum radius. c, This cylinder is 
then enclosed in a hexagonal prism. d, The hexagonal prism can be tiled infinitely in a plane. Thus, 
the effective cross-sectional area of a design is estimated as the area necessary per design to tile it 
in a plane without collisions. 

 

Supplementary Note 3. Defining a Generalized Cylindrical Shell 

 A cylindrical shell is often defined in terms of its height h, wall thickness t, and diameter 
d. Here, we design generalized cylindrical shells (GSC) that are topologically consistent with 
cylindrical shells and have a consistent wall thickness and height, but vary in their cross-sectional 
profile along the axial direction. As a diameter is not an appropriate measure for such a complex 
shape, we parameterize these using their average perimeter P0. A GCS design is realized by 
deforming cylindrical shells using three distinct transformations: variable perimeter, variable cross 
section, and twist (Figure S3a). These transformations are defined mathematically in the methods 
section of the main text. Briefly, the variable perimeter is realized by linearly varying the perimeter 
from the top of the GCS to the bottom of the GCS (Figure S3b). In this campaign, the perimeter 
of the top was constrained to be larger than the perimeter of the bottom to ease with component 
removal. The cross sections of the GCS were transformed using a summed cosine function 
(Figure S3c). The top cross section and bottom cross section are specified, and each intermediate 
layer is calculated as a linear interpolation of these two faces, ensuring a manifold surface. Finally, 
both sinusoidal and linear twist can be applied to these cross sections in a height-dependent manner 
(Figure S3d). Collectively, these transforms allow for more than trillions of unique designs. 



5 

 

Fig. S3 | Generalized cylindrical shells. a, Generalized cylindrical shells (GCS) are realized by 
transforming a cylindrical shell of height h and wall thickness t to create interesting shapes that 
preserve the topology of the shell. b, The perimeter P varies linearly along the height z of the shell 
based on an average perimeter P0 and a perimeter difference x1. c, The cross sections of each layer 
are deformed in a z-dependent manner using a summed cosine function with 4-period amplitude C4 
and 8-period amplitude C8. These are defined at the top and bottom by four variables x2, x3, x4, and 
x5, and linearly interpolated to determine the cross section at any z. d, The cross sections of the 
design are rotated about the cylinder axis in a z-dependent manner by rotation angle ϕ0 using both 
linear and sinusoidal twists as defined by linear twist x6, sinusoidal twist amplitude x7, and sinusoidal 
twist period x8.   
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Supplementary Note 4. Polymers under Consideration 

 The polymer materials studied in this work are provided in Table S2 along with the 
temperature at which they were printed, the temperature at which the print bed was held during 
removal, and the material class. In addition, for each spool of material studied, a cylindrical sample 
was printed and tested to estimate the material properties of the polymer. The details of this process 
are provided in the methods. As shown in Figure S4, the result of this testing are estimates of the 
elastic modulus E and plateau stress σp of each material. In addition, the degree to which the 
cylinder rebounded after a one-minute relaxation period was also recorded, although this is an 
imprecise measure of elasticity as a consistent force threshold was used for all tests, indicating that 
different materials experienced different total strains. Nevertheless, the plastic materials rebounded 
less than the hyperelastic materials, despite their total strain being lower. 

 

Material Manufacturer Nozzle 
Temperature 
(°C) 

Bed Removal 
Temperature 
(°C) 

Class Spools 
Used 

TPE 
(Chinchilla) 

NinjaTek 250 100 Hyperelastic 9 

TPU-1 
(NinjaFlex) 

NinjaTek 250 100 Hyperelastic 16 

TPU-2 
(Cheetah) 

NinjaTek 250 100 Hyperelastic 37 

TPU-3 
(Armadillo) 

NinjaTek 250 30 Intermediate 11 

Nylon MatterHackers 250 30 Plastic 2 
PETG MatterHackers 250 30 Plastic 5 
PLA eSun/MakerGear 220 30 Plastic 29 

Table. S2 | Filaments studied in this work along with their processing settings. 

 

 

Fig. S4 | Material characterization of polymers studied. a, Plateau stress σp vs. elastic modulus 
E for seven materials used in this campaign. b, Rebound fraction vs. E. c, Rebound fraction vs. σp. 
Error bars represent one standard deviation. Here, σp is the stress at 25% strain. Rebound fraction is 
the height after 1 minute relaxation divided by the initial height.  
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Supplementary Note 5. The Bayesian Experimental Autonomous Researcher   

 The Bayesian experimental autonomous researcher (BEAR) consists of a collection of 
computers and other hardware that work together to perform research experiments without direct 
human intervention. It consists of five fused filament fabrication 3D printers, a scale, a universal 
testing machine, and a six-axis arm to transfer experiments between the different stations 
(Figure S5). The various components are controlled centrally by a custom-made MATLAB script 
(Figure S7). The BEAR has a series of tasks that it can do, which it does in order of a user-
modifiable priority (Figure S8).  

 
Fig. S5 | Picture of the Bayesian experimental autonomous researcher (BEAR), consisting of 
five fused filament fabrication 3D printers, a six-axis robot arm, a scale, and a universal testing 
machine.  

 

5.1 Select Experiment 

Bayesian optimization was used by the BEAR to algorithmically select additional 
experiments. This process includes the conditioning of a surrogate model to approximate the 
connection between input space and output space and then the use of an acquisition function to 
evaluate this model to find experiments that are believed to be most useful to perform. Since the 
goal of this work was to identify structures with high Ks*, we treated this as a maximization 
problem. The input space for this maximization was both the design of the GCS and the material 
used to realize a component out of this design. As such, we required a 13-dimensional input (11 
geometric parameters and two material properties). For the output space, we were not just 
interested in Ks*, but we also found it necessary to predict σt*. Gaussian process regressions (GPRs) 
were used to predict Ks* and σt*. A neural network with one hidden layer equal to the input size 
was used to predict component printability. Specifically, predicting printability is done purely 
through empirical means based on the results of past experiments. Specifically, each experiment 
is assigned a tag of “printable” or “unprintable” based on a combination of automated processes 
(i.e. was a component delivered to the testing frame) and out-of-the-loop manual inspection. These 
tags were used to train a classifying neural network that can rapidly predict the printability of any 
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point in the GCS parameter space. To evaluate potential experiments, the output of this neural 
network was multiplied by their predicted Ks* to bias the search into printable regions of parameter 
space.  

In developing surrogate models, transformations were done to the GCS design parameters 
and material parameters to improve the accuracy of the models. The overall motivation of these 
transformations was to improve correlations in the input space and thus improve predictions in the 
output space. The full list of the transformed input and output spaces are given in Tables S3 and S4. 
For example, the logarithms of σp, σt*, and E were taken because their values varied over several 
orders of magnitude and the points were more evenly spaced when considered logarithmically 
rather than linearly. Additionally, rather than specify P0, we preferred to specify the target mass m 
normalized by h, or the mass per height m/h. Additionally, a wall angle θ was used as it was 
hypothesized that the angle of the wall was more important than the absolute value of the change 
in P. This wall angle was estimated using the formula 𝜃 = atan ቀ ௫భଶగቁ. Finally, rather than 
conditioning the GPR to directly predict Ks*, we found that it was useful to transform Ks* to 
emphasize differences at the high end while minimizing differences at the low end and to explicitly 
prevent the model from predicting physically impossible values (i.e. Ks*>1 or Ks*<0). Thus, we 
instead predicted atanh(2Ks*–1). This function was chosen because it monotonically transforms 
inputs from 0-1 to outputs from negative infinity to positive infinity. Mechanical intuition suggests 
that a given design produced using different materials may have a similar efficiency, but its 
strength should vary based upon the strength of the material. Given sufficient time, this trend 
would naturally be learned by an active learning process. However, to accelerate this process, we 
hypothesized that learning the strength of a design relative to its material properties may be more 
efficient. Indeed, early in the campaign we plotted log σt* vs. log E and found that the best fit trend 
line had a slope of 0.408. Thus, we began normalizing σt* by E0.408 in an attempt to capture this 
variation of component strength with material properties. It is important to note that variations 
about this trend were still allowed for and learned. 

 

Model input variable  Description 
h Height (mm) 

m/h Mass per height (g/mm) 
t Wall thickness (mm) atan ቀ 𝑥ଵ2𝜋ℎቁ Wall angle (degrees) 

x2 4-period amplitude of bottom cross section (dimensionless) 
x3 4-period amplitude of top cross section (dimensionless) 
x4 8-period amplitude of bottom cross section (dimensionless) 
x5 8-period amplitude of top cross section (dimensionless) 

x6 ∕h Linear rotation per height (rad/mm) 
x7 Sinusoidal rotation amplitude (rad) 
x8 Sinusoidal rotation wavelength (mm) 

ln(E)  Natural log of the polymer elastic modulus ln(MPa) 
ln(σp) Natural log of the polymer plateau stress ln(MPa) 

Table. S3 | Inputs to the machine learning models used for Bayesian optimization. 
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Model output variable  Description Model type 
atanh(2Ks

*–1) Transformed peak energy absorbing efficiency 
(dimensionless) 

Gaussian process regression 

log ൬ 𝜎௧∗𝐸.ସ଼൰ Log 10 of the ideal threshold stress normalized 
by the modulus and raised to an empirically 
determined power log(MPa0.592) 

Gaussian process regression 

p Printability (dimensionless) Artificial neural network 
Table. S4 | Outputs of the machine learning models used for most of the experimental campaign. 

 

When selecting a subsequent experiment for a given printer, not all combinations of designs 
and materials were available. Specifically, each printer had two independent extruders, which 
allowed two different filaments to be loaded at once. Further, each extruder had either a 0.5 mm 
diameter nozzle or a 0.75 mm diameter nozzle. Values of t different from these diameters could be 
achieved by over or under extruding. We restricted t < 0.7 mm for the 0.5 mm diameter nozzle and 
t ≥ 0.7 mm for the 0.75 mm nozzle.  

To select an experiment, we define an acquisition function a that takes as its input positions 
in parameter space along with the current surrogate models and select the experiment that 
maximizes a. Throughout the campaign, three types of acquisition functions were used: maximum 
variance (a is equal to the variance in predicting Ks*), expected improvement (a is the predicted 
amount of improvement beyond the previous best Ks*), and upper confidence bound (a is the 
weighted sum of the predicted of Ks* and the predicted uncertainty in predicting Ks*). The 
combination of a and the strategy for finding its maximum is considered a decision policy. 
However, this process was not treated as a simple single-objective maximization. For instance, in 
all cases, a is multiplied by the predicted printability p to ensure that we are only considering 
components that are expected to be realizable in practice. Additionally, many of the decision 
policies are multi-objective, trying to find high values of Ks* across a range in σt*. When this was 
the case, multiple GPR model predictions were combined to select a component by penalizing the 
Ks* prediction by the distance of its predicted σt* from the target σt or by comparing the predicted 
Ks* to the performance of other tests at that σt*. A full list of considered decision policies is given 
in Table S5. These policies were added sequentially during the progression of the campaign, so 
their order reflects the evolution of our thought process during the campaign, discussed further in 
Section 6. Additionally, the GPR models can be retrained using only data from the region of 
interest, which was begun with decision policy 19. This allowed the GPR to capture finer 
correlations in the parameter space around the region of interest. All models were trained using 
MATLAB’s built in functions and the code is available at 
https://github.com/KelseyEng/BEAR_ADTS. Model Training was performed on Boston 
University’s Shared Computing Cluster, where multiple compute nodes could work in parallel. 
GPR processing time scales with the number of experiments cubed.1 Therefore, the longer the 
campaign ran, the more computationally expensive model building and component selection 
became. 

 



10 

Decision 
Policy 
Number 

Acquisition 
function 

Metric Number of 
Valid 
Experiments 

0 Manually Selected Researcher intuition or performance validation 730 
1 Upper confidence 

bound 
Full integral of force-displacement curve 24 

2 Maximum variance Full integral of force-displacement curve normalized by 
component mass 

916 

3 Expected 
improvement  

Full integral of force-displacement curve normalized by 
component mass 

775 

4 Expected 
improvement 

Expected acceleration of a simulated impact test 93 

5 Expected 
improvement 

Ks at a target σt 249 

6 Expected 
improvement 

Ks
* penalized by an amount proportional to the distance 

between σt
* and a target σt 

97 

7 Expected 
improvement 

Ks
* penalized by an amount proportional to the distance 

between σt
* and a target σt with uncertainty in σt

* 
considered 

383 

8 Expected 
improvement 

Ks
* minus the best Ks previously observed at the predicted 

σt
* 

3,219 

9 Expected 
improvement 

Ks
* minus the best Ks previously observed at the predicted 

σt
*, but with limits imposed on the largest and smallest 

stresses considered 

31 

10 Expected 
improvement 

Ks
* minus the best Ks previously observed at the predicted 

σt
*, but only considered components that could have been 

printed using the specific printer under consideration 

501 

11 Maximum variance Ks
*, but only considering cylindrical shells 34 

12 Expected 
improvement  

Ks
*  1,608 

13 Not Used 
14 Expected 

improvement 
A weighted sum of the acceleration from a simulated 
impact test and the plateau stress of the component 

41 

15 Expected 
improvement 

A weighted sum of the acceleration from a simulated 
impact test and the plateau stress of the component 
(different simulation model from DP 14) 

212 

16 Expected 
improvement 

Ks
* times the ideal threshold force for that component 22 

17 Expected 
improvement 

Ks
* minus the best Ks

* that could have been printed using 
the specific printer under consideration 

1,041 

18 Expected 
improvement 

Ks
*, but only considering components near the best 

previously found component 
1,569 

19 Upper confidence 
bound 

Ks
*, but only considering components near the best 

previously found component 
224 

20 Upper confidence 
bound 

Ks
*, but only considering components near the best 

previously found component that have effective densities 
ρd below 10% 

542 

21 Not Used 
22 Expected 

improvement 
Ks

* minus the best Ks previously observed at the predicted 
σt

*, but only considering components that could be 
continuously extruded without a linear twist 

523 

23 Expected 
improvement 

Ks
* minus the best Ks previously observed at the predicted 

σt
*, but only considering components that could be 

continuously extruded with a linear twist 

286 
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24 Expected 
improvement 

Ks
* of a two-component system 129 

25 Expected 
improvement 

Ks
* of a two-component system, but only considering 

components near the best previously found pair of 
components 

1 

Table. S5 | Descriptions of decision policies used during campaign. 

 

Initially, sampling points were selected on a grid. Starting at ID 9,261, potential sampling 
points were selected using Latin hypercube sampling (LHS) to facilitate exploring space more 
finely. Starting with ID 11,763, after the proposed experiment had been selected, a second round 
of sampling points were added that were zoomed in a hypercube around the selected point to 
more closely find the maximum of a. 

 

5.2. Generate G-code 

Once a component has been selected for testing, the STL was generated using a custom 
Python script. This Python script (Python version 3.8.3) was run on the main computer and called 
from MATLAB using the command line function. The resulting STL was created as a solid object. 
In order to convert this STL file into the G-code needed for the printer, Slic3r (version 1.3.0) was 
run from the command line of MATLAB. Prior to sending the STL file, the Slic3er configuration 
file was edited using string manipulation directly from MATLAB to set the nozzle temperature, 
bed removal temperature, and extrusion multiplier. The two temperatures were designated by the 
human team based on our experience with these materials (see Table S2) while the extrusion 
multiplier was set as part of a feedback system to maintain component weight (see below). Slic3er 
was configured to use vase mode (spiral mode), which removes the tops and bottoms of solid 
objects and turns the STL solid into a shell. The output of this process is G-code for the print and 
predicted amount of filament that is needed to print this component, which is read into MATLAB. 
Using an initial set of calibration prints and subsequent use of integral feedback, we predicted the 
mass of the component from the amount of filament predicted to be used by the slicer. Adjusting 
the extrusion multiplier and reslicing the component provided a reliable method of controlling the 
mass of the final component and standardizing performance across different printers and filament 
rolls (Figure S6). This gives effective control over t by over or under expanding the material 
leaving the nozzle. It also allows the computer to automatically compensate for variations in the 
thickness of the filament diameter or variations between the stepper motor of different printers. 
Relatively slow print speeds of 15 mm/min were employed to prevent clogging, which was 
especially important for the softer filaments.  
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Fig. S6 | Mass calibration through extrusion multiplier adjustments. a, A single component 
printed five times with different extrusion multiplier shows that component mass is linearly 
correlated with extrusion multiplier. b, Applying integral tuning to the extrusion multiplier was 
ineffective because of variations in slicing complex curved structures, as seen in print number < 60. 
However, when integral tuning was applied to the slicer filament length by adjusting the extrusion 
multiplier rapidly, consistent mass was obtained (print number > 60). Mass is normalized by target 
mass and slicer filament length is normalized by the initial slicer filament length (print number = 1). 

 

 

5.3 Begin Experiment 

Once the G-code had been prepared for a given printer, the physical experiment was ready 
to begin. First, the arm moved into position over the chosen printer and the arm-mounted camera 
took a photograph of the print bed to ensure that it was free from debris and ready for the next 
print. To accomplish this, the picture was run through a neural net based on GoogLeNet2 and 
classified as ‘clear’ or ‘needs cleaning’. If the bed needed cleaning, the robot arm picked up a 
scraper and scraped the print bed. A new picture was then taken to verify that the print bed was 
clean. If the bed was still unclean, the BEAR would attempt to clean the bed up to ten times with 
the scraper. If the bed was still unclean, the printer would be deactivated and the operator was 
notified to clean the bed before further experiments. Once the bed was determined to be clear, the 
system sent G-code to the printer using OctoPrint.  

 

5.4 Weigh Component 

When a print was complete, as determined by querying the state of the printer through 
OctoPrint, the bed was heated (TPE, TPU-1-2)  or allowed to cool (PLA, PETG, and Nylon, TPU-
3) to facilitate removal of the component.3 Once the desired temperature had been reached, the 
robot arm removed the component from the printer and moved it to the scale, which determined 
its mass. This mass reading was read through a serial port by MATLAB. If no mass was registered 
on the scale, the system attempted to re-grab the component from the print bed up to three times. 
At this stage, the arm-mounted camera took a photograph of the component on the scale, which 



13 

was used to verify that the component was fully on the scale. Components that were misoriented, 
as determined by machine vision, were discarded before testing. 

 

5.5 Test Component 

If a component was on the scale and ready to be tested while the universal testing machine 
(UTM) was not performing any experiments, the component was moved to the UTM for 
compression testing. Once the component was in position, the main computer sent a command to 
the Instron computer to begin the test through a .mat file transferred by the cloud. The Video 
computer then told the Instron to start the test while it recorded a video of the compression testing. 
The test began with the top platen ~200 mm over the component. After zeroing the force sensor, 
the top platen moved at a rate of 50 mm/min toward the component until the force sensor registered 
1 N. The platen then moved away from the component 1 mm so that it no longer was in contact 
with the component. At this point, the UTM started recording the force measurement while it 
lowered the top platen at 2 mm/min. A given test ended when either 1) the force exceeded the 
4.5 kN force limit or 2) the top platen position fell below the safe height of 0.4 mm separation 
between the two platens. After a one minute relaxation period, the platen was lowered again at a 
rate of 100 mm/min until the force exceeded 1 N to find the rebound height. After testing, the 
component was removed from the UTM and stored. The platen was then cleaned with the robot 
arm to ensure that the platens were clear and ready for the next test. Each mechanical test took 
approximately ten minutes. A third computer recorded the Instron data and saved it to the cloud. 
When the test was finished, the Video computer informed the main computer that the UTM was 
now free for another experiment.  

 

5.6 Process Results 

When new experimental results were available to be processed, the raw force-displacement 
data was loaded into MATLAB. The as-printed height of the component was calculated by finding 
the platen separation when the moving median of twenty force measurements surpassed 0.3 N. 
The effective area of the component was calculated by computing the maximum radius of any 
layer of the component and using that as the apothem (distance from center to midpoint of side) of 
a circumscribing hexagon (Figure S2). Using this height and effective area, the force-displacement 
curve was converted to a stress σ – strain ε curve.  

From the σ–ε curve, a variety of useful metrics were calculated. To find Ks* and σt*, Ks was 
calculated at 1,400 σt values that were logarithmically spaced between 10 Pa and 100 MPa. Ten 
additional σt sampling points were selected by diving the σ–ε curve into ten equal sections in ε and 
finding the maximum σ in each section. Because σt* is often a peak early in the σ–ε curve, these 
ten additional sampling points can often determine σt* precisely. For each of these sampling points 
(1,400 evenly spaced points and ten extra points taken from the σ–ε curve), we compute Ks(σt) and 
assign Ks* and σt* to the maximum and argmax of this calculation, respectively. The densification 
strain εd is the ε value at which σ first exceeds σt*. The relative density of the component ρr was 
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calculated by dividing the mass of the component by the mass of solid material equal to the volume 
of the enclosing hexagon (Figure S2).  

Finally, quality control checks were performed to determine if the sample should be 
included in the complete dataset. Components that were not within 5% of their mass target or 
within 5% of their target height were excluded from the results. Additionally, components that hit 
the force threshold of the UTM when ε < 0.3 were excluded due to the high probability that σt* 
was greater than the UTM’s force threshold. 

 

5.7 Maintenance 

At the beginning of the campaign and periodically thereafter, new filament rolls were 
loaded into the printers. After performing material characterization (Section 3), a series of 
calibration components were printed to tune the extrusion multiplier of the printer to the density 
and diameter of the filament. The target mass for the calibration component was 3.3 g. If the 
component was too heavy, the extrusion multiplier was decreased. If it was too light, the extrusion 
multiplier was increased. This continued until the mass was within 5% of the target mass. In this 
way, it was possible to estimate the ratio of the filament length computed by Sli3er to the mass of 
the resulting component. As components were subsequently printed during the campaign, this ratio 
was slowly adjusted using integral tuning to remain accurate. Additionally, components were 
printed on polyimide tape that was applied to the glass bed of the printers. Whenever the tape 
showed signs of wear or became damaged, it was manually replaced.  
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Fig. S7 | Hardware and software Organization of the Bayesian experimental autonomous 
researcher (BEAR).  
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Fig. S8 | Flowchart of the software loops executed in the four computers running as part of the 
BEAR. Colors on the panels correspond to systems in Figure S7. Order of Main Loop actions can 
be adjusted by researchers to maximize throughput by prioritizing potential bottlenecks. 
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Supplementary Note 6. Details of the Experimental Campaign 

 The experimental campaign consisted of 25,387 experiments. During the course of the 
campaign, the available search space was changed by adding parameters, changing the limits of 
the included parameters, and by changing the method used to sample search space. After each 
experiment, the results were evaluated for defects in fabrication or testing. Components were 
excluded from the database if their height or mass deviated more than 5% from the target or if the 
maximum strain recorded was less than 30%. Additionally, researchers excluded components with 
severe print defects, which were reviewed daily. A record of all experiments performed is provided 
in Figure S9 and the raw data associated with these experiments is shared via kablab.org/data. 

 

Fig. S9 | Experiments carried out by the BEAR. Experiments performed during the campaign, 
which are defined by eleven GCS parameter values. The color of each dot corresponds to the 
material used, as designated in Figure S4. Black and red stars correspond to breakthrough 
experiments, as designated in Figure 2a.  

 

 Over the course of the multi-year campaign, the details of how experiments were chosen 
were altered based on the intuition of the experimenters and by evaluating the progress of the 
BEAR. Examples of these changes include, the introduction of sinusoidal twist, the switch to LHS 
sampling (from grid-based sampling), allowing components to have both sinusoidal and linear 



18 

twists combined, and switching to cooling plastic materials after printing. The timing of these 
changes is shown in Figure S10a. Researchers also controlled which filaments were loaded into 
which nozzles. New filaments were introduced during the campaign and the mix of filaments was 
changed to pursue different goals, as summarized in Figure S10b. Finally, 23 different decision 
policies were used throughout the campaign, as shown in Figure S10c and Table S3. Of particular 
importance was the introduction of Ks* as a key metric in decision policy six and the introduction 
of GPRs created by zooming in on the region of the best component to date, introduced with 
decision policy 18. 

 

Fig. S10 | Details of the human/machine collaboration. a, Ks
* of each successful test (gray dots), 

along with the highest Ks
* to date (blue line). Key changes to the processing and sampling space are 

marked. b, Modulus of each experiment’s filament roll plotted in semi-log (right axis) and colored 
according to the Figure S4, along with the highest Ks

* to date (blue line – left axis). c, Decision 
policy of each experiment (right axis), along with the highest Ks

* to date (blue line – left axis). 
Decision policies are listed with descriptions in Table S3. 
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Fig. S11 | Enlarged images of noteworthy components. a-h, Pictures of noteworthy parts that 
significantly improved Ks

* during the course of the campaign, as seen in Figure 2a. Heights vary 
from 19 mm (a-d) to 27.8 mm (g). Maximum widths range from 29 mm (g) to 48 mm (b). The 
color of the pictured components is indicative of the material used, with Green indicating PLA, 
Blue indicating PETG, Red indicating TPU-2, and Gray indicating TPU-3. Pictures are reprints, as 
the original parts were deformed during initial testing. 
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Fig. S12 | As-recorded and uncorrected images for experiment 21,285. Still images obtained 
from the video of this component being tested in uniaxial compression. Enhanced images and their 
corresponding strain are shown in Figure 2b. 

 

Supplementary Note 7. Post-Analysis of the Campaign 

 Following the conclusion of the campaign, we sought to use the corpus of test results to 
understand the performance of superlative designs (Section 7.1), the performance envelopes of 
each material (Section 7.2), and the use of game theory to tease out the parameters responsible for 
the performance of the most efficient components (Section 7.3). 

 

7.1 Comparison of the Iroko and Willow Designs 

 The superlative designs discovered in hyperelastic and plastic materials were very 
different. Plastic materials, which deform permanently, were able to achieve Ks* > 75%. 
Components made from hyperelastic materials, in contrast, were all Ks* < 63% with consistent 
values being significantly lower still. Performance for superlative components made using the 
same design but different materials was correlated within material classes, but decreased 
significantly when moving outside the material class. For the top performing PLA design (Willow) 
and the top performing TPU-2 design (Iroko), three samples were printed on each of the five 
printers, for a total of 15 samples. Additionally, three samples were printed on a single printer for 
four other materials. All of these σ–ε curves are shown in Figure S13. Of particular interest, several 
of the TPU-3 and PETG components experienced buckling events during compression, leading to 
sharp declines in the force that recovered at higher values of displacement (Figure S13b). Because 
the Iroko design utilizes elastic wall bending to absorb energy, stiffer plastics can buckle abruptly, 
leading to decreased efficiency. This is an example of how the mechanical outcome can depend on 
the confluence of material properties and structure.  
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Fig. S13 | Willow/Iroko by material. a, Stress σ–strain ε curves for components made using the 
Willow design printed in TPU-1, TPU-2, TPU-3, PETG, and PLA. PLA, the original Willow 
material, has 15 tests, while the other materials have three each. b, σ–ε curves for components made 
using the Iroko design printed in the same five materials. TPU-2, the original Iroko material, has 15 
tests while the other materials have three each. Colors depict the material as in Figure S4.  

 

7.2 Material-Dependent Performance Envelope  

 The attainable envelope of Ks* and σt* for each material was estimated by computing a 
convex hull around all experimentally measured points (Figure S14). To determine the maximum 
stress σtp for each material, the point with the highest Ks* was chosen. To obtain a measure of the 
uncertainty in this term, we retroactively step through the campaign and determine each time the 
σtp would change and report the expected value as the median of these terms with the error being 
the standard deviation in their values (in logarithmic space).  
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Fig. S14 | Convex hulls for seven materials. All tests for each of the seven materials studied, with 
their final σtp marked. The materials are TPE (a), TPU-1-3 (b-d), nylon (e), PETG (f), and PLA (g). 

 

7.3 Statistical Analysis of the Superlative Design  

 To understand how GCS parameters influence superlative components, we employed a 
machine learning-based approach to assess the significance of these parameters. Specifically, we 
built a neural network to predict Ks* for components made out of PLA. Figure S15a depicts the 
parity plot of this network. By applying Shapley additive explanations (SHAP),4 we were able to 
separate the individual contributions made by each GCS parameter to the neural network’s 
predictions of Ks*. Inspired by Shapley values in Game Theory, SHAP assigns a value to each 
feature in a machine learning model, indicating its impact on the prediction. We seek to understand 
the difference in influence between a component and an ideal cylindrical shell (same diameter, 
height, and wall thickness). To achieve this, we subtract the SHAP values of Willow from the 
SHAP values for a pure cylindrical shell to obtain a “delta” in explanations. Our analysis of Willow 
revealed that the four most influential parameters contributing to its predicted performance are the 
wavelength of the sinusoidal twist (x8), the linear twist linear (x6), and the 4-period amplitude of 
the bottom and top (x2, x3), (Figure S15b).  

 The neural network used for SHAP analysis comprised six layers: a 64-dimension linear 
layer followed by a ReLU activation5, repeated three times. A data split of 80% for training, 10% 
for validation, and 10% for testing was employed. The GCS parameters were normalized and no 
preprocessing was applied to Ks*. The network was trained using the mean squared error loss 
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function. The training process uses the Adam optimizer6 with a learning rate of 0.001, weight decay 
of 1×10-5, and a batch size of 16. Training was performed for 500 epochs with early stopping. The 
PLA network achieved a test loss of 0.0032 and a coefficient of determination R2 = 0.88. For 
interpreting the predictions generated by the neural networks, we used the SHAP DeepExplainer 
which is initialized using the training split data. To provide explanations for individual 
components, we use the default SHAP waterfall visualization. 

  

Fig. S15 | Shapley additive explanations (SHAP) analysis of Willow as the superlative design. 
a, Parity plot of the neural network built on all data taken using PLA with Willow highlighted. b, 
SHAP waterfall plot for the Willow design tested in PLA relative to a PLA cylindrical shell with 
the same height, diameter, and thickness. These values show the cumulative effect of positive (red) 
or negative (blue) contributions of individual feature values to model predictions.  
 

 

 
Fig. S16 | Simulation of efficiency for combinations of tested willow components. a, Two or 
more experimental F-separation curves (red) can be combined to create a simulated test of in-plane 
tiled components (blue). Curves are added in platen separation space to account for possible 
variations in component height. b, Mean and one standard deviation in Ks

* for original components 
(red) and combined prediction (blue) for varying number of components.   

 

While this study focused on energy absorbing efficiency, both the toughness per unit mass 
(Figure S17a) and toughness per unit volume (Figures S17b) are interesting properties to examine. 
For both metrics, performance is correlated with both material strength and component effective 
medium density. Despite this, the toughness of a component is unbounded in compression due to 
the densification of most structures. To illustrate this issue, consider both the Willow and Iroko 
structures from Figure 3. By measuring the specific toughness below a given σt, it demonstrates 
that most of the energy is absorbed before the critical stress, but that Uv continues to increase as σt 
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increases. This makes it difficult to compare toughness tested on instruments that have different 
force limits unless the performance is bounded by some force or stress threshold. For this reason, 
employing Ks allows not only comparison across different materials, but also mitigates different 
testing limitations based on machine capabilities or user choices. 
 

 
Fig. S17 | Examining toughness metrics beyond energy absorbing efficiency. a, Toughness per 
mass Um vs. component effective medium density for all successful experiments. The color of each 
dot corresponds to the material used, as designated in Figure S4. b, Toughness per volume Uv vs. 
component effective medium density for all successful experiments. c, Uv vs σt for the original 
Willow component with the point representing Ks

* marked by a black dot and the parity line showing 
the maximum possible Uv. d, Uv vs σt for the original Iroko component. 
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