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Superlative mechanical energy absorbing
efficiency discovered through self-driving
lab-human partnership

Kelsey L. Snapp 1, Benjamin Verdier2, Aldair E. Gongora 1,
Samuel Silverman 2, Adedire D. Adesiji 1, Elise F. Morgan 1,3,4,
Timothy J. Lawton 5, Emily Whiting2 & Keith A. Brown 1,3,6

Energy absorbing efficiency is a key determinant of a structure’s ability to
provide mechanical protection and is defined by the amount of energy that
can be absorbed prior to stresses increasing to a level that damages the system
to be protected. Here, we explore the energy absorbing efficiency of additively
manufactured polymer structures by using a self-driving lab (SDL) to per-
form>25,000 physical experiments on generalized cylindrical shells. We use a
human-SDL collaborative approach where experiments are selected from over
trillions of candidates in an 11-dimensional parameter space using Bayesian
optimization and then automatically performed while the human team
monitors progress to periodically modify aspects of the system. The result of
this human-SDL campaign is the discovery of a structure with a 75.2% energy
absorbing efficiency and a library of experimental data that reveals transfer-
able principles for designing tough structures.

Structural motifs define the ways we efficiently use materials. For
instance, the ubiquity of I-beams in architecture is due to the efficiency
of this shape in resisting both shear and bending1,2. Natural structures
feature similar examples, such as the hollow circular cross-section of
bamboo providing high bending and torsional resistance3–6. For the
large class of structures designed to provide protection under a
compressive load, the key property to consider is the totalmechanical
energy absorbed during compression7–10. This desire to discover tough
structures has motivated a focus onmetrics like energy dissipated per
unit volume or per unit weight. However, in compression, it is nearly
always possible to increase the applied stress to absorb more energy,
thus when considering specific energy absorbed, or another metric
with a dimension, one must also define an operating stress. Along
these lines, there are practical restrictions to absorbing energy in any
engineering application, for example, that the stress must be held
below a level that would damage the system to be protected11. Col-
lectively, these restrictions mean that terms like specific energy

absorption are not easily applied in comparing tough structures at
different stresses. Therefore, it is useful to define an energy-absorbing
efficiency Ks, a non-dimensional measure of how much energy is
absorbed without surpassing a given threshold stress12,13. Unfortu-
nately, Ks is difficult to optimize becausemost of the energy absorbed
by a structure designed for mechanical protection occurs beyond the
elastic regime where deformations are highly non-linear, often feature
dynamic self-self contacts, and are challenging to model.

As a result of the challenge of designing tough structures, much
work has focused on known, relatively simple motifs such as honey-
comb lattices or cylindrical shells that have an analytical basis for
performing well12,14. Others have drawn inspiration from nature to
identify more complex structural motifs15–18. Computational approa-
ches, including finite element analysis (FEA) and machine learning-
based approaches have also been widely used to design complex
geometries19–25. These computational approaches pair well with addi-
tive manufacturing, which allows the fabrication of complex
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designs26–30. Nevertheless, the fabrication of candidate structures is
often the limiting step in the design process and is commonly limited
to validating designs. Furthermore, despite the speed and versatility of
computational approaches such as FEA, it is very challenging and
sometimes impossible to accurately capture Ks using computation
because of the complex interplay of material plasticity, material non-
linearities, structural non-linearities, and dynamic self-self
contacts31–33. Furthermore, models studied by FEA often deviate from
reality due to unavoidable processing-dependent defects and varia-
bility of the physically realizable structures. Thus, improvements to Ks

remain slow: to date, additively manufactured structures designed for
energy absorption typically feature Ks < 50% (Figure S1). There exist
better synthetic materials, the best being a plastic foam reported to
have reached Ks = 68.1%34. However, this record is surpassed by nature:
Balsa wood has the highest previously achieved Ks, 71.8%, showing the
value of millions of years of evolution35. It is clear that new approaches
are needed if the performance envelope of this important property is
to be improved.

Here, we utilize a self-driving lab (SDL) to test >25,000 additively
manufactured structures in a large-scale data-driven campaign to dis-
cover tough structures with superlative Ks. SDLs are robotic research
systems that select, perform, and analyze physical experiments with-
out needing human intervention36,37, and they have been productively
employed in chemistry38,39, materials science40, mechanics41, and
microscopy42,43. Motivated by the observations that SDLs can progress
toward user-chosen goals faster than either high-throughput
experimentation44 or tests chosen by subject matter experts45–48, we
hypothesize that an SDL allowed to explore seven polymers in an 11-
dimensional parameter space over trillions of possible designs can
discover new structural motifs that advance the frontier of Ks. The
result of this sustained human-machine collaboration is thatwe realize
a structurewithKs = 75.2%. In addition to showing theopportunities for
SDLs to overcome design barriers, this campaign results in a vast,
labeled dataset that has implications for both mechanics and design
more generally. For instance, we explore two high-performing struc-
tural motifs and find that they exhibit consistent performance within
classes of materials, namely plastic or hyperelastic polymers. Finally,
aggregate analysis of this data provides general design heuristics that
allow for the efficient selection of materials and structures.

Results
Defining a Campaign to Study Generalized Cylindrical Shells
As amotivating example to explore the considerations that define and
limit Ks, we consider the compressive behavior of a cylindrical shell
composed of a hyperelastic thermoplastic polyurethane (TPU). When
tested in compression, the resulting force F-displacement D curve
shows an initial elastic region, a yield point, and then complex post-
yield behavior that originates from combinations of plastic deforma-
tion, buckling and other large elastic deformations, and reentrant
contact (Fig. 1a). To compute Ks, F-D is first converted to stress σ vs.
strain ε for the effective medium using the dimensions of the com-
ponent (Figure S2). DefiningKs requires specifying a threshold stress σt
that is typically associated with the strength of the system to be pro-
tected. Graphically, Ks represents the amount of energy absorbed by
the component while σ ≤ σt (Fig. 1a – blue region) relative to the
maximum energy that could be absorbed during complete compres-
sion (ε = 1) without exceeding σt (Fig. 1a – red rectangle). To compute
Ks at a specific σt, we numerically evaluate Ks = σ

�1
t

R εt
0 σ εð Þdεwhere εt is

thegreatest strain atwhich σ ≤ σt for all 0 < ε ≤ εt. Interestingly, formost
structures, Ks(σt) has a singlewell-definedmaximum Ks

* at an optimum
threshold stress σt

*. This σt
* often corresponds to the initial yield stress

of a structure, although it can occur at higher stresses, particularly
when the component densifies at low strains or does not significantly
soften after yielding. As such, Ks

* and σt
* were found for this and all

structures numerically as described in Section 5.6 of the Supplemental

Information. In the example of Fig. 1a, the cylindrical shell is limited to
Ks

* = 39.8% due to significant post-yield softening. To maximize Ks
*, a

flat post-yield region and a delay of densification until large ε are both
desirable. Unfortunately, this knowledge alone does not provide a
prescription for how to adjust the structure to obtain these desired
behaviors.

We hypothesized that programmed perturbations to the geo-
metry of a cylindrical shell could tailor the complex post-yielding
behavior to drastically increaseKs

*. While cylindrical shells are typically
defined by a small number of geometric parameters, namely their
diameter d, height h, and thickness t, we augmented these to form an
11-parameter family of structures termed generalized cylindrical shells
(GCS) (Fig. 1b). In addition to t, h, and d, a GCS is defined by eight

Fig. 1 | Challenge of designing energy-absorbing structures. a Force F vs. dis-
placementD andeffectivemediumstressσ vs. compressive effectivemediumstrain
ε for an additively manufactured cylindrical shell made of thermoplastic poly-
urethane (TPU). Maximum energy absorbing efficiency Ks

* is calculated at an
optimum threshold stress σt

* (dashed line) by dividing the energy absorbed while
σ ≤ σt

* (blue region) by the theoretical maximum amount absorbed (red rectangle).
b Eleven independent geometric parameters, including diameter d, height h, wall
thickness t, and eight other parameters x1-8 that together define a generalized
cylindrical shell (GCS). When combined, at least trillions of unique designs are
possible. c Elastic modulus E of the seven polymers studied as determined by
compression tests. Error bars represent one standard deviation. d Schematic
showing an autonomous research system in which five 3D printers are used to
fabricate polymeric structures that are automatically weighed, imaged, and tested
using quasistatic compression. The output of this testing is automatically inter-
preted and used to select subsequent designs to test.
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additional parameters x1-8 including four that adjust the cross-sections
of the top and bottom of the shell, one to define the perimeter of the
top relative to the perimeter of the bottom, and three to describe the
rotation of the perturbations from top to bottom (Figure S3). Fur-
thermore, because theGCS spacedoes not have circular cross sections
for most designs, we define d = P

2π, where P is the average perimeter of
the design. We note that each of the eleven parameters would only
need twelve unique values for their combinations to surpass a trillion
unique designs. Given that each parameter is continuous and can be
assignedmanymore than twelve values,we consider trillions of unique
designs to be a lower limit to the size of the parameter space.While we
have previously used FEA to compute mechanical metrics like resi-
lience, stiffness, and yield force49, our inability to rapidly or accurately
calculate the shape of the post-yield region using FEA led us to not
pursue this method for accelerating the study of Ks. Therefore,
experiments were necessary for assessing Ks. Because all the resulting
structures are topologically equivalent to cylindrical shells, they can be
fabricated using extrusion-based additive manufacturing by con-
tinuously extruding material, thus making this parameter space
intrinsically designed for additive manufacturing. In addition to the
geometric parameters, we sought to explore a variety of polymers.
Therefore, we considered seven materials that included those that are
hyperelastic, such as a thermoplastic elastomer (TPE) and TPU, those
that plastically deform, suchaspolylactic acid (PLA), andmaterials that
fall in between these two distinct classes (Fig. 1c). These materials can
be characterized based on their elastic modulus E, their plateau
strength σp, and rebound strain (Figure S4).

To efficiently search the effectively infinite GCS parameter space,
we employed the Bayesian experimental autonomous researcher
(BEAR), a customized SDL developed to combine additive manu-
facturing of polymers and mechanical testing (Fig. 1d). The BEAR is a
closed-loop system in which samples are printed using one of five
fused filament fabrication (FFF) printers, automatically retrieved using
a six-axis robotic arm, and then characterized using a scale, machine
vision, and uniaxial compression testing. After testing, the information
was automatically analyzed to determine whether the test was of
acceptable quality. This learningprocess featured a fault tolerance that
was a combination of intrinsic and explicit factors. Especially if com-
ponents had no structure due to large overhangs, the small contact
areawith the print bed, non-manifold surfaces due to high twist values,
or print-head collisions caused by excessive extrusion, they would be
tested and exhibit low efficiency, naturally guiding the algorithm away
from this region of design space. If the sample was so poorly defined
that it could not even be tested, these experiments were automatically
marked as unprintable to prevent the algorithm from repeatedly
selecting this or similar designs. In both cases, these assignments were
manually confirmed asynchronously by the human team. Subsequent
experiments were selected using Bayesian optimization, which
entailed conditioning a surrogate model of the mechanical perfor-
mance using all previously measured GCS components and then
selecting combinations of designs and materials that maximized a
specified acquisition function. As this experimental campaign began
with a very small amount of data, Bayesian optimization using Gaus-
sian process regression was selected to model this data because it is
efficient in the low-data regime50. Now that a large database exists,
more sophisticated models such as variation autoencoders could be
employed to more accurately model the design space and facilitate in
the selection of new experiments51. The SDL autonomously performed
these tasks to choose, perform, and analyze experiments at a typical
pace of ~50 experiments per day. Collectively, 25,387 experiments
were performed using seven different materials, with 13,250 experi-
ments resulting in valid data. It is worth emphasizing that even
experiments not included in the final dataset provide value, for
example, in determining the subspace of GCS designs that are prin-
table using FFF. From the beginning of the campaign to the end,

experiments were running for ~60% of the total wall clock time,
showing the robustness of this process. This system is an evolution of
an SDL developed by our research group44. A picture of the system
(Figure S5) as well as full details on the hardware (Figure S7) and
software (Figure S8) used as part of the BEAR are provided in the
methods and supplementary information.

Discovering high-performing structures
An extensive SDL campaign proceeded as a continuous human-
machine collaborationwhere the responsibilitieswere sharedbetween
the SDL and the human team (Figure S9). Progress in the campaign can
be visualized by tracking Ks

* measured for each experiment along with
a running maximum throughout the campaign (Fig. 2a). The con-
tinuous progression was a result of both persistent experimentation
by the SDL and choices made by the human team based on the pro-
gress of the SDL. Interestingly, large jumps in performance were
typically either due to serendipity (i.e. the SDL chose a fortuitous
region) or a human-led intervention. For example, we highlight three
human interventions based on observing the progress of the SDL.
First, prior to experiment 4,829, the SDL was programmed to select
experiments based on Ks at one specific σt. However, we noted that
there were several different reasons why a specific sample would have
a low Ks, so we needed to provide the SDL with more information. We
hypothesized that tracking both Ks

* and σt
* from each experiment

would allow for more meaningful information to be extracted by the
SDL. After implementing this change, the SDL rapidly increased the
maximum Ks

* from 45% to 55%. As a second example, at experiment
15,678, we noted that a large fraction of plastic components were
failing the height quality control checkbut passing themass check.We
had been heating the print bed after printing to facilitate the auto-
mated removal of components, but determined that the forces exer-
ted during removal could deformplastic components. Upon changing
the SDL to cool plastic components prior to removal, the system
proceeded to make a series of jumps in maximum Ks

* from 60 to 68%.
Finally, at experiment 17,730 we noted that the predictive model used
by the SDLwas systematically underpredicting Ks

* for high-performing
components, so we implemented a process where the proposed
experiment was selected using a model built only on data close to the
best-observed experiment, a process similar to algorithms such as
TURBO or ZOMBI52,53. This intervention led the SDL to progress from
70.6% to 75.2% in maximum Ks

*. A summary of significant human-led
actions is provided in Figure S10.

The culmination of these adjustments and continued experi-
mentation by the SDL resulted in the observation of Ks

* = 75.2%, a
value that was higher than had been previously reported. The per-
formance of this superlative experiment is shown in Fig. 2b, which
shows the σ – ε curve and photographs of the component at different
stages of compression. It is clear from the flatness of the post-yield
region, together with the photographs, that the SDL has discovered a
way for buckling and other large elastic deformations, plasticity, and
reentrant contact to work together to achieve a remarkably flat pla-
teau until densification initiated at ~80% strain. Interestingly, this
component was composed of PLA, which is not commonly regarded
as a high-performance material. Upon repeated experiments, the
design, which we termed Palm, had an average Ks

* = 73.1 ± 0.9.
Although Palm printed in PLA had the largest single value of Ks

*,
75.2%, observed in the entire campaign, we discovered other com-
ponents that had higher average Ks

* values than Palm.

Material influence on design and performance
To explore variations in performance across different material classes,
we selected two high-performing designs discovered in different
materials. The design discovered in PLA with the highest average Ks

*,
termedWillow, is tall andhas a compact center region (Fig. 3a). Testing
15 identically prepared samples of theWillow design resulted in a tight
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distribution of yield forces with variations in the post-yield plateau.
Nevertheless, PLA components made using this design exhibit
Ks

* = 73.3 ± 0.9%, showing a consistent performance above previously
reportedmaxima. That said, the repeatability of superlative designs on
multiple FFF systems suggests that defects in the fabrication process
do not limit performance. The highest performing design discovered
for TPU-2 is termed Iroko and consists of a relatively short and open
design (Fig. 3b).Weobservedmore substantial variations among the 15
Iroko σ – ε profiles, and the average Ks

* = 53 ± 4% was substantially
lower than that of the best plastic components. The differences in
attainable Ks

* between PLA and TPU-2 can be explained by considering
that these are different material classes, with PLA being a glassy
polymer that exhibits substantial plastic deformation while TPU-2 is a
hyperelastic elastomer. This difference in properties ismost evident in
their post-compression behavior, in which the TPU component
recovers ~99% of its height one minute after compression while the
PLA component is permanently flattened to ~23% of its initial height.

While Willow and Iroko represent optimizations for their original
materials, the question remains of whether the performance of these
shapes can translate to other materials or if it is a highly bespoke
optimization of this combination of material and design. To explore
this, components based on the Willow and Iroko designs were fabri-
cated using a wide range of materials and tested in triplicate (Fig-
ure S13). Studying Ks

* of these components showed the limitations of

the transferability of these designs (Fig. 3c). While each design per-
formedwith comparableKs

* formaterials in their respective classes (i.e.
hyperelastic vs. plastic), a transition region was observed at inter-
mediate E. This observation reveals how material stiffness and plasti-
city modulate the energy-absorbing capacity of geometric designs.
Specifically, higher stiffness, together with greater plasticity, mitigates
the amount of softening the component exhibits as portions of it bend
during compression. Overall, the comparison of Willow and Iroko
confirmed that designs perform well within specific classes of mate-
rials but that these geometric motifs do not directly translate to dif-
ferent material classes.

Broader design considerations
While the SDL-based campaign was able to discover highly efficient
designs, we hypothesized that the broader corpus of mechanical tests
performed during this campaign could provide further mechanical
insight. As an initial exploration of this idea, the results of all the
experiments performed with TPU-2 are shown in Fig. 4a. The shaded
region denotes the convex hull that estimates the space of accessible
properties. This shows that the best performance observed for this
material occurs at a single σt

*, which we denote the material peak
threshold stress σtp. Interestingly, all other materials studied exhibit a
similarly shaped convex hull with a distinct peak (Figure S14), high-
lighting both the importance and the feasibility of tuning the material
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Fig. 2 | Research campaign to find highly efficient structures. a Each maximum
energy absorbing efficiency Ks

* measured over the first ~21,500 experiments per-
formed. Pictures highlight noteworthy components (black stars) and the highest-
performing structure (red star). Larger versions of images are included asFigureS11.
The color of the pictured components is indicative of thematerial used, with Green
indicating PLA, Blue indicating PETG, and Red/Gray indicating different types of

TPU. The solid blue line denotes the running best Ks
* observed. b Effective medium

stress σ vs. effective medium strain ε for experiment 21,285, named Palm, which
resulted in Ks

* = 75.2%. Inset photographs show the state of the component at var-
ious points indicated on the curve (images enhanced to improve clarity – originals
given as Figure S12). Shading denotes regions used to compute Ks

* as described
in Fig. 1a.
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properties to the specific energy-absorbing application. We found that
over the seven tested materials, σtp was strongly correlated with the
polymer plateau stress σp (Fig. 4b), providing an algorithmic process for
selecting amaterial to optimallymatch use cases across a wide range of
threshold stresses determined from different systems to be protected.
Then thematerial can be selected and structured tomaximize Ks at that
σt. Importantly, we do not believe that σtp is dependent upon 3D

printing capabilities or choice of experiments as this value was not
found to drift to higher or lower stresses throughout the campaign. As
such, this relationship may have applicability beyond the GCS design
family.

In addition to tuning material properties, we hypothesized that
unifying features of high-performing designs could be extracted to
provide transferable guidance for realizing efficient structures. For
example, it is reasonable to expect that the relative density ρr of the
component would strongly influence Ks

* (Fig. 4c). This hypothesis is
motivated by the observation that the two factors that together bound
Ks

* are the flatness of the plateau region and the strain εd where this
plateau drastically rises due to densification. It has been observed for
foams that εd is bounded by relative density12,34. Because εd ≥Ks

*, we
hypothesized that low ρr is necessary for high Ks

*. Examining Ks
* vs. ρr,

we found that Ks
* peaked at ρr ~ 0.1 with all designs with Ks

* ≥ 65%
having 0.05 ≤ ρr ≤0.21, providing guidance for structural design.
Interestingly, becauseρr canbecalculatedprior to fabrication, limiting
physical testing to designs with ρr in this range can eliminate potential
components that are unable to achieve high Ks

*. To leverage this fact,
we implemented a decision-making policy that focused on designs in
this low-density regime. This is both an example of using a metric that
is quick to compute to accelerate learning and represents a facet of the
human-machine teaming where an observation by the human team
helped the SDL search more efficiently.

Beyond the aggregate details of the design, there is a great deal of
work exploring the mechanical regimes present for cylindrical shells
under uniaxial compression. For example, the ratio d/t of a cylindrical
shell determines whether plastic cylinders fail through plastic defor-
mation (thick wall limit) or fail elastically through the formation of local
buckles (thin wall limit)54. This transition has been observed to occur at
d/t ~ 100. Further, the height of cylindrical shells is often characterized
by the dimensionless length parameterω=h=

ffiffiffiffiffi
dt

p
55. Here, cylinders are

considered tobe shortwhenω < 1.7. PlottingKs
* vs.d/t andω reveals that

all of the highest performing structures (i.e. Ks
* ≥ 70%), which were

made from plastic materials, had 16 < d/t < 24 and 6.75 <ω <8.25, which
can be considered thick-walled medium-length cylindrical shells
(Fig. 4d). For simple cylinders in this region, one would expect elastic
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Fig. 3 | Explorationofhigh-performingdesigns discovered in elastic andplastic
materials. a Rendering of Willow, a high-performing design discovered using the
plastic polymer polylactic acid (PLA) together with effective medium stress σ vs.
effective medium strain ε for 15 identically prepared PLA Willow components.
b Rendering of Iroko, a high-performing design discovered using the hyperelastic
polymer TPU-2, together with σ vs. ε for 15 identically prepared TPU-2 Iroko com-
ponents. cMeasured maximum energy absorbing efficiency Ks

* vs. polymer elastic
modulus E for Iroko and Willow components made from one of five polymers.
Dashed lines show a sigmoidal fit to guide the eye. Error bars represent one stan-
dard deviation. Marker colors denote component composition, as shown in Fig. 1c.
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t

at which the highest Ks
* is observed for that material. b σtp vs. polymer plateau

stress σp for seven polymers tested during the campaign together with a power law
fit shown as a dashed line. Error bars indicate one standard deviation of σtp found
throughout the campaign. Marker color indicatesmaterial as shown in Fig. 1c. c Ks

*

vs. relative density ρr for all components tested during the campaign with point
color denoting Ks

*. dNormalized heightω vs. diameter-to-thickness ratio d/t for all
components tested during the campaign in which point color denotes Ks

* as in (c).
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buckling and plastic deformation to both play major roles. Thus, one
way to understand the data-driven optimization process is that
the other eight geometric parameters that define a GCS component
have been tuned to guide these complex buckling and plastic interac-
tions to interact constructively. Interestingly, we may use the tools of
machine learning to identify which geometric motifs are most respon-
sible for this improvement. In particular, we employ Shapley additive
explanations (SHAP) analysis to find that the four-lobed profile of
the cylinder (x2-3) together with the linear and sinusoidal twist of this
profile along the shell (x6-8) are together responsible for 90% of the
improvement over a simple cylindrical shell (Figure S15). Mechanically,
this suggests that the key feature for improving the efficiency is pro-
ducing local plastic deformation events that result in sufficient self-self
contacts to prevent post-yield weakening. This feature allows the
structure to maximize the material plasticity that occurs while main-
taining a flat post-yield region.

While the main focus of this work has been the discovery of
isolated structures that exhibit high mechanical efficiency and,
therefore, high toughness, it is interesting to consider whether these
components could act in concert to be useful for larger systems. For
instance, these structures could be tiled in two dimensions to form a
regular lattice. To facilitate this, the minimum tileable area of each
component was used as the reference area to compute stress. To
explore whether the aggregate Ks of multiple high-performing com-
ponents would retain their high performance, we computed the
predicted Ks values for combinations of the Willow replicates
reported as part of Fig. 3a. Interestingly, not only was the composite
predicted to retain its superlative Ks, but this value was predicted to
increase as more components were added to a maximum of 74.2%
when 10 componentswere combined (Figure S16). This improvement
with averaging can be understood by considering that the largest
variability observed for this componentwas in the plateau region and
so regression of this curve to its mean is expected to result in closer
agreement between the initial yield stress and this plateau region.
These results point to examining combinations of GCS components
as a promising area of future research.

This study focused on optimizing themaximumenergy absorbing
efficiency, but it is also interesting to consider the performance of
these components through the lens of other commonly used metrics
such as energy absorption normalized bymass or volume (Figure S17).
Despite this not being the optimization target, structures that absor-
bed asmuch as 22.8 J/g or 10 J/cm3 were identified as part of this study.

Discussion
This work reports a series of mechanical insights that resulted from
performing an extensive experimental campaign using an SDL.
Through the exploration of a vast parameter space, we were able to
identify components with superlative Ks, advancing the frontier of
energy absorption and finally overcoming the record previously held
by nature. These designs were found to be general within material
classes when additively manufactured, showing the opportunities and
limitations of transferability of the designs. A longstanding goal in the
mechanics community is to identify simple shapes that are predicted
to obtain high performance, such as the analytically predicted 75%
efficiency of honeycomb lattices12. However, a noteworthy feature of
this work is that the final components contain repeatable geometric
details defined by the FFF process that are not captured in the simple
GCS digital model, such as the scalloping of the walls. This acknowl-
edges a key reality that, in practice, all structures have to be physically
realized and any manufacturing technique contains characteristic
microstructures and idiosyncrasies that are unique to that method. It
may be that obtaining superlative efficiency requires optimizing the
structure within the context of how it would be physically realized by
the fabrication method – as we have done here through our extensive
experimental campaign. We expect future work will focus on studying

the transferability of these high performing GCS geometries to other
fabrication methods.

In addition to identifying superlative designs, this SDL campaign
also illustrated howoptimization and learning could be complementary
goals in that the generated corpus of data allowed for the extraction of
design insights for the optimal use of polymers. These insights include
matching polymer materials to target use cases, highlighting the use of
ρr as an aggregate descriptor, and gaining connections to the broader
literature on the mechanics of cylindrical shells. While here we only
present limited mechanical trends that capture the breadth of the
dataset, we anticipate that the availability of this data will motivate
others to dive deeper into specific regions and provide insight into
phenomena such as failure mechanisms and what geometric aspects
would prevent them. The assembled database of GCS properties under
uniaxial compression could also be very valuable in accelerating the
discovery of other categories of mechanical response through the
principles of transfer learning. For example, we have previously shown
that quasi-static performance can be used to predict impact perfor-
mance in a data-driven manner56. Further, transfer learning using fea-
ture transformation can be used to develop output spaces in which
correlations are easier to learn, as we have shown using FEA
calculations49. As such, the GCS dataset is likely to be useful to accel-
erate learning other categories of mechanical response. From a
mechanics standpoint, we expect that this work will provide geometric
motifs that lead to more efficient and safer protective equipment.

From a broader learning perspective, this work shows how the
iterative and collaborative interaction between SDLs and human teams
can lead to sustained progress.We should note that this study was not
dedicated to benchmarking the acceleration inherent to using SDLs.
Prior work, including our own44,49, has focused on such benchmarking,
and ongoing research is focused on developing algorithms and pro-
cesses to efficiently select experiments53,57. In this work, ourmain focus
was discovering new mechanical structures, and we believe that this
type of sustained campaign is an example of how SDLs can fruitfully
exist in the materials discovery pipeline. An important point to con-
sider is that the process used here allowed the human-SDL partnership
to leverage the strengths of each member. In particular, it has been
widely seen that algorithmic decision making is more efficient at
navigating high-dimensional spaces than even expert selection of
experiments45–48. The approach used here allowed the SDL to auton-
omously and continuously explore this space while the humans pro-
vided periodic guidance in the form of making adjustments to the
algorithm or accessible space. Having the human out of the loop
allowed the autonomous system to continuously progress while
requiring human decision making at each point would have made the
pace of experimentation impossible. While it would have been useful
from a benchmarking perspective to construct a predetermined pro-
cess for humans to interact with the SDL within a narrow scope, this
rigid framework would not allow for the effective use of human crea-
tivity to adapt to unexpected problems. The fruitful partnership of
humans and SDL raises the question of what general lessons or
approaches can be applied in these cases. Some studies have emerged
that begin to address the concept58,59, and it is a promising area for
further study. Finally, an important avenue for future research is
learning how to effectively combine simulations such as FEA with
experimental campaigns such as this to increase the rate of learning
while reducing the burden of physical experimentation.

Methods
Design of generalized cylindrical shells
To provide a vast space of potential designs that are topologically
identical to cylindrical shells, we developed a generalized cylindrical
shell (GCS) family of structures, which is an 11-dimensional parameter
space (Figure S3). Three of these parameters are common to any
cylindrical shell, namely the shell heighth, wall thickness t, and average
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perimeter P0. Beyond these three variables, eight additional para-
meters x = [x1, x2, x3, x4, x5, x6, x7, x8] are introduced that change the
height-dependent cross-section of the shell. The azimuthally-
dependent radius r(z,ϕ) is shifted by adding two cosine functions
with set periodicities as inspired by the summed cosine design of
mechanical structures60. In particular, r at any given height z and azi-
muthal angle ϕ is given by

r z,ϕð Þ= r0ðzÞ 1 +C4 zð Þ cos 4 ϕ+ϕ0 zð Þ� �� �
+C8 zð Þ cos 8 ϕ+ϕ0 zð Þ� �� �� �

,

ð1Þ

WhereC4(z) andC8(z) are amplitudeprefactors to the summedcosines,
ϕ0(z) is a rotational offset, and r0(z) is a prefactor adjusted to set the
height-dependent perimeter P(z) of the shell. Eachof these functions is
defined by terms of x. Specifically, we define,

P zð Þ=P0 1 + x1
z
h
� 1

2

� �	 

, ð2Þ

such that x1 is the difference between the perimeter at the top of the
component and the perimeter at the bottom. The Python function
scipy.optimize.minimize was used to minimize the error between the
P(z) and the actual perimeter of Eq. (1), estimated using Simpson’s rule,
by adjusting r0(z) at each layer.

Each summed cosine term is defined by specifying its value at the
top and bottom of the shell and linearly interpolating between these
points, specifically,

C4 zð Þ= x2
h� z
h

+ x3
z
h
, ð3Þ

and

C8 zð Þ= x4
h� z
h

+ x5
z
h
: ð4Þ

To determine the azimuthal offset of each layer, we include two
ways in which this can vary with height, namely a linear and sinusoidal
shift. Specifically, we define,

ϕ0 zð Þ= x6
z
h
+ x7 sin 2πx8z

� �
: ð5Þ

Code to generate standard triangle language (STL) models based
on the GCS family of shapes is available https://github.com/bu-
shapelab/gcs.

Sample preparation
To fabricate samples, STL files were converted to G-code using Slic3r
v.1.3.0. Filament rolls for 3D printing were purchased and used as
received. They include three different types of thermoplastic poly-
urethane (TPU): TPU-1 (NinjaFlex-Ninjatek), TPU-2 (Cheetah-Ninjatek),
and TPU-3 (Armadillo-Ninjatek). Additionally, four more filaments
were used: thermoplastic elastomer (TPE) (Chinchilla-Ninjatek), nylon
(Matterhackers Pro Series), polyethylene terephthalate glycol (PETG)
(Matterhackers Pro Series), and polylactic acid (PLA) (eSun PLA+ and
MakerGear). Samples were fabricated using MakerGear M3 printers
with either a 0.5 or a 0.75mmnozzle at 80 °C bed temperature, 250 °C
nozzle temperature (except for PLA, which was printed using 220 °C),
and 15mm/s print speed using vasemode. The cylindrical shell sample
in Fig. 1a was fabricated out of TPU-2 (Cheetah – Ninjatek) to be
19.5mm tall, 27.9mm wide, and have 0.5mm thick walls.

Mechanical characterization of samples
Quasi-static uniaxial compression was performed using an Instron 5965
with a 5 kN load cell at 2mm/min until the force reached 4.5 kN or until
the platens were separated by less than 0.4mm. The resulting force-
displacement datawas converted to stress-strain by dividing the force by
the area of a hexagon thatwould enclose the component and by dividing
the displacement by the initial height, respectively (Figure S2). The
mechanical energy absorbing efficiency Ks vs. threshold stress σt was
computed by dividing the amount of energy absorbed below σt by the
maximumamount that could be absorbedwithout exceeding that stress.

To determine the mechanical properties of each roll of filament,
solid cylinders (100% infill) were printed, measuring 16mm tall and
8mm in diameter. These cylinders were then tested in uniaxial com-
pression at 2mm/min. Force-displacement curves were converted to
stress-strain curves by dividing the force by the component cross-
sectional area and by dividing the displacement by the height,
respectively. From the resulting stress-strain curves, three material
properties were calculated: themodulus of thematerial, plateau stress
σp, and the rebound fraction. Themodulus Ewas calculated by fitting a
series of lines in windows of 0.05–0.25 strain and an initial strain
location of 0 to0.25 strain (to avoid toe regions), both in increments of
0.05. The largest slope observed was taken as the modulus for the
sample. The σpwas the stress value at 25% strain. The rebound fraction
was the height of the part after a one-minute relaxation period divided
by the initial height before testing, both measured by the Instron. One
cylinder was tested for each roll of filament used.

Development of the Bayesian experimental autonomous
researcher
In order to study the mechanical energy absorbed by additively man-
ufactured components under uniaxial compression,wedeveloped and
utilized a self-driving lab (SDL). This system incorporated several dis-
tinct instruments, computers, and algorithms that worked in concert
to select experiments, construct physical samples, and test them with
minimal human intervention. From a hardware perspective, this sys-
tem consisted of five fused filament fabrication (FFF) printers
(MakerGear M3-ID) arrayed in an arc. In the center of this arc was a
6-axis robot arm (Universal Robotics UR5e). Also in the working radius
of this arm was a scale (Sartorius CP225D) and a universal testing
machine (UTM) (Instron 5965). The arm had a webcam (Logitech
C930e) to allow formonitoring the flow of experiments, and there was
a video camera (PixelLINK PL-D722) with a lens (Infinity InfiniMite
Alpha)mounted facing the bottomplaten of the UTM to record videos
of the tests. A picture of the SDL is shown in Figure S5. The hardware
and software organization of this system is shown in Figure S7.

A flow chart describing the core actions of this system is shown in
Figure S8. At the most basic level, the system comprised a loop
implemented in MATLAB 2021a (Mathworks Inc) in which the system
repeatedly iterated through six potential actions, namely: (1) Use the
accumulated data to select the design and material to be tested next
given the available printer andmaterials. (2) Generate the digital design
files needed to run the available printer. (3) Send the G-code file to the
printer and begin printing the component. (4) Retrieve the completed
component from the printer and weigh it using the scale. (5) Retrieve
the component from the scale, place it on the platen of the universal
testing machine, run the mechanical testing program, and then clear
the component from the platen. (6) Read the results of themechanical
testing and update the accumulated data. The order of priority was
tuned to maximize the throughput of the system by giving priority to
actions that were likely to become bottlenecks. The details of these
steps are given in the supplementary information.

The research campaign
Over the course of the campaign, 25,387 experiments were performed
(Figure S9). Although individual experiments were rarely selected by
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hand, a variety of decisions were made by the researchers along the
way (Figure S10). Changes were made to the parameter space under
consideration, such as adding sinusoidal twist or switching to Latin
hypercube sampling (LHS) (Figure S10a). Additionally, new materials
were added to the campaign, and the mix of filaments loaded into the
printers was adjusted to focus on specific goals (Figure S10b). Finally,
various decision policies were used, including maximum variance,
expected improvement, and upper confidence bound (Figure S10c).

Data availability
The data generated in this study have been deposited in the OpenBU
database under the accession code https://hdl.handle.net/2144/46687.

Code availability
The code used to generate GCS designs is available at Github https://
github.com/bu-shapelab/gcs and is archived in Zenodo with the
identifier https://doi.org/10.5281/zenodo.1093359661. The code used
to operate the SDL is available at Github https://github.com/
KelseyEng/BEAR_ADTS and is archived in Zenodo with the identifier
https://doi.org/10.5281/zenodo.1092845262.
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