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Optimized Designs

Figure 1: We create a dataset of random walk microstructures (left) to train a surrogate model that maps microstructure geometry
to effective stiffness. This surrogate enables efficient inverse design via gradient-based topology optimization, producing
printable architectures with targeted directional stiffness properties (right).

Abstract

This paper presents a differentiable pipeline for topology optimiza-
tion of high-resolution mechanical metamaterials on grid domains,
enabling complete geometric freedom within a fixed-resolution
design space. Our method begins with a microstructure genera-
tion procedure based on random walks, which avoids hand-crafted
parameterizations and populates the design space without strong
geometric priors, yielding a diverse set of mechanically meaning-
ful microstructures. We train a convolutional neural network to
predict homogenized stiffness tensors from these microstructures,
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enabling a fast and differentiable approximation of mechanical be-
havior without the need for finite element solves. By plugging this
surrogate into a topology optimization loop, we can backpropagate
through mechanical objectives and discover high-resolution, fabri-
cable designs across a wide range of densities and target behaviors.
We demonstrate our pipeline’s inverse design capabilities, produc-
ing microstructures with both isotropic and anisotropic stiffness,
and validate our predictions through mechanical testing.
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+ Applied computing — Computer-aided design; - Computer
systems organization — Neural networks; - Computing method-
ologies — Physical simulation.
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1 Introduction

Microstructures offer a powerful means of tailoring mechanical
properties at the macroscale. By carefully designing the internal
geometry of a periodic unit cell, it is possible to achieve effective
stiffness [Surjadi et al. 2025], compliance [Huang et al. 2024], and
anisotropy [Kumar et al. 2020] that would be impossible with ho-
mogeneous bulk materials. Such functionally engineered materials,
commonly referred to as mechanical metamaterials, derive their
properties not just from the base material itself but from the intri-
cate spatial arrangement of voids and solids. Mechanical metamate-
rials are widely used in lightweight structural design, soft robotics,
mechanical filtering, and energy absorption systems.

Creating these geometries with desired mechanical properties
is a challenging inverse problem, and optimal designs often fea-
ture non-intuitive features. To handle this complexity, topology
optimization (TO) [Bendsge and Sigmund 1999] has emerged as a
powerful tool, using gradients of mechanical objectives to evolve the
geometry. However, traditional TO pipelines are computationally
expensive. Each design iteration requires solving a partial differen-
tial equation (PDE), often via finite element methods (FEM), making
large-scale or real-time exploration inefficient.

A promising remedy is to replace the forward FEM solve with
a differentiable surrogate, typically a neural network that maps a
candidate design to its homogenized mechanical properties and
whose gradients can be back-propagated through the TO loop.
Existing surrogates [Kumar et al. 2020; Li et al. 2023; Van ’t Sant et al.
2023], however, are commonly trained on specific, parametric shape
families, which limits their generalization to arbitrary designs. To
support reliable learning across broader design spaces, it is essential
to curate a large dataset that spans a wide range of physically
plausible and fabricable microstructures without introducing strong
geometric biases.

In this work, we introduce a random-walk growth procedure that
produces a large, bias-free set of binary microstructures spanning
the full density spectrum and a wide range of mechanical responses.
Leveraging this dataset, we train a periodic convolutional neural
network (CNN) surrogate that can be directly inserted into gradient-
based topology-optimization loops on regular grids, enabling truly
free-form, high-resolution design beyond the limitations of shape-
parametric surrogates.

2 Related Work

2.1 Metamaterial Design

Mechanical metamaterials derive their effective properties from
geometry rather than their underlying material composition. To ex-
plore and exploit this structure—property relationship, researchers
have developed a wide variety of parameterized microstructure
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families. These parameterizations serve two key roles: enabling ex-
pressive control over geometry and facilitating efficient exploration
of mechanical responses.

Truss-based parameterizations offer a lightweight, physically
intuitive scaffold for designing microstructures with tunable elastic-
ity. Researchers combine truss networks with connectivity graphs
to span a diverse range of Poisson’s ratios and moduli [Panetta
et al. 2015; Tozoni et al. 2020]. Huang et al. [2024] explore shock-
absorbing lattices generated by modifying 2D truss connectivity.
Bastek et al. [2022] construct trusses via composable topologies
and affine deformations to enable shear coupling. Researchers have
combined truss and woven networks to emulate dual-polymer sys-
tems [Surjadi et al. 2025] and introduced programmable digital
weaves with sliding yarn-like connections [Li et al. 2022].

Another prominent strategy is to represent microstructures
through tiling patterns. Isohedral tilings form a compact yet expres-
sive family, with geometric degrees of freedom that modulate the
shape of the unit cell. Schumacher et al. [2018] and Li et al. [2023]
both use isohedral tilings to generate diverse families with varying
elastic responses. Deng et al. [2022] use a set of control points to
perturb a base unit tile. Martinez et al. [2019] introduce tilings via
generalized Voronoi diagrams, with Efremov et al. [2021] extending
the process to 3D.

Alternatively, researchers have explored foam-like microstruc-
tures using either procedural generation [Martinez et al. 2016, 2018,
2017] or through phasor-noise-based textures [Tricard et al. 2020].
Implicit methods, such as spinodoids [Kumar et al. 2020], trade ex-
plicit geometry for fields: a few shape parameters modulate complex
topologies via level sets or random fields, offering both smoothness
and diversity. Makatura et al. [2023] introduce a unified procedural
graph framework that generalizes many existing parameterizations,
including beams, shells, and triply periodic surfaces, into a com-
pact, composable system for metamaterial design. Microstructures
defined on voxel grids [Schumacher et al. 2015] give fine-grained
control and a natural fit for topology optimization, breaking free
from geometric parameterization. In this work, we adopt a grid-
based design representation, which offers the highest geometric
flexibility within a fixed resolution.

2.2 Homogenization

Directly simulating a fine-scale microstructure is computationally
intractable. To address this, homogenization provides a principled
approach to approximating the behavior of a periodic material by
computing its effective mechanical properties. We adopt a classic
homogenization formulation based on the method of Andreassen
and Andreasen [2014] to obtain effective stiffness behavior for our
designs. This technique remains the dominant approach for linear
elastic regimes. Other approaches extend homogenization to more
complex scenarios; Kharevych et al. [2009] introduce a mesh coars-
ening technique that aggregates fine-scale elastic heterogeneity
into effective coarse-scale elements.

When the constituent material is nonlinear, traditional linear
homogenization is insufficient. Recent methods address this with
nonlinear homogenization frameworks. Li et al. [2023] run a homog-
enization procedure at various directions and magnitudes, using
nonlinear material properties to construct an effective nonlinear
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behavior. Huang et al. [2024] develop a nonlinear homogenization
simulation accounting for self-contact between microstructural fea-
tures during large deformations. Sperl et al. [2020] built a nonlinear
homogenization procedure for woven and knitted fabrics. Zhang et
al. [2023a] created an adpative interpolant for homogenization at
finite strains.

2.3 Inverse Design

Traditional approaches to inverse design define a differentiable
objective function over the microstructure geometry and use the
homogenization simulation’s gradients to optimize the design iter-
atively. These gradients are often computed via adjoint methods
instead of finite differences, which enables efficient backpropaga-
tion through expensive simulations. Panetta et al. [2015] perform
shape optimization of periodic truss networks by differentiating
the homogenization procedure itself. Schumacher et al. [2015] use
topology optimization where the material layout is relaxed to con-
tinuous densities and the effective properties are optimized via
simulation gradients. Huang et al. [2024] develop a contact-aware
nonlinear simulation pipeline and apply gradient-based optimiza-
tion. In contrast to gradient-based methods, Martinez et al. [2016]
adopt a sampling-based approach, fitting a low-order polynomial to
a dataset of designs, bypassing the need for differentiable simulation
altogether.

More recently, machine-learning-based surrogate models have
emerged as a promising alternative to traditional simulation-driven
pipelines. These models approximate the homogenization map di-
rectly, predicting the effective mechanical properties of a given
microstructure design. The key advantage is that once trained, sur-
rogates replace FEM solves, and their differentiability makes them
ideal for integration into inverse design loops. Rao and Liu [2020]
train a neural network to predict homogenized stiffness tensors
from voxelized inputs, although they do not utilize it for design pur-
poses. We develop a similar model for use in downstream gradient-
based topology optimization. Li et al. [2023] train a network to
predict the strain energy density field for a given design, enabling
gradients of the predicted energy to yield effective stiffness tensors.
Peng et al. [2022] train a CNN that predicts the displacement fields
of parallelepiped microstructures used for homogenization calcula-
tions. Li et al. [2024] propose a data-driven discovery pipeline that
uses a CNN surrogate, allowing for optimization over trade-offs
between competing objectives. Tandem learning strategies [Kumar
et al. 2020; Silverman et al. 2025; Van 't Sant et al. 2023], where one
network maps design parameters to effective properties while a
second learns the reverse mapping, enable inverse design without
requiring a differentiable simulation.

3 Method

We develop a fast, differentiable surrogate model that maps mi-
crostructure designs to their elastic properties. To train this model,
we generate a dataset of valid periodic microstructures paired with
ground-truth stiffness tensors computed via finite element homog-
enization (Sections 3.1 and 3.2). To improve generalization, we
apply symmetry-based data augmentation, exploiting the periodic
and geometric invariances of the domain (Section 3.3). Finally, we
present the architecture of our surrogate model (Section 3.4).
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3.1 Random Walk Microstructures

3.1.1  Microstructure Growth. We require a large and diverse dataset
of valid microstructure designs to train a model that generalizes
across a broad range of physical behaviors. In particular, we seek
structures that are:

(1) Physically meaningful: Solid material should form a single
connected component, forming one continuous material.

(2) Expressive: The dataset should encompass a range of mate-
rial fractions and spatial configurations.

(3) Unbiased: The designs should not be restricted to a narrow
parametric family nor confined to the output of a specific
optimization algorithm.

One strategy for generating grid-based microstructures is to use
parametric shape families, such as lattices, trusses, or tiled prim-
itives, that can be procedurally varied to produce a collection of
designs. While effectively constraining the space to fabricable and
connected structures, such parameterizations inherently bias the
dataset toward specific geometric motifs and may limit generaliza-
tion. At the opposite end, purely random sampling methods (e.g.,
assigning each pixel as solid or void independently via Bernoulli
draws) are unbiased. However, even with post-selection to enforce a
target volume fraction, these randomly generated patterns typically
lack global connectivity and are poorly suited for mechanical tasks.

To address these limitations, we introduce a simple and effective
random walk growth procedure (Figure 2), which produces con-
nected, diverse microstructures while offering direct control over
the total amount of material.

Given a grid of resolution Iy X I, we construct each binary
microstructure as follows:

(1) Selecta target number of filled cells m € [Ly+Iy—1, Lxly]. The
lower bound (Ix +Iy —1) corresponds to the minimum number
of steps required to span the domain in a valid connected
path. The upper bound (Ix!y) yields a fully solid design.

(2) Randomly choose a grid cell to initialize the walk.

(3) Perform a random walk over the grid. At each step, the walk
moves to a random neighboring cell (up, down, left, or right)
and marks it as solid if it has not already been visited. We
allow the walk to wrap around grid edges, which does not
violate the material connectivity requirements when tiling
the microstructure. The process stops once m distinct cells
are filled.

Start ———— — Random walk End

m=1 m=2 m=3 m=4 m=4 m=11

Figure 2: A microstructure is generated by performing a ran-
dom walk over a 4 X 4 grid, growing until a target number of
filled cells (11) is reached. Because each new cell is adjacent
to the existing cluster, counting wraparound adjacency, this
procedure guarantees local connectivity in the periodically
tiled design.
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3.1.2  Microstructure Verification. The random walk procedure en-
sures local connectivity as solid pixels form a continuous path, as-
suming seamless tiling across boundaries. However, the procedure
does not guarantee global connectivity of the resulting periodic
structure. For example, a walk that reaches only the horizontal
edges may appear connected under local wrapping yet still produce
disconnected components when the unit cell is tiled in the plane.

To address this, we introduce a global connectivity verification
procedure (Figure 3) that checks for strong connectivity across the
tiled designs. The steps are as follows:

(1) Tile the candidate design into a 2 X 2 array. This ensures that
all periodic boundary transitions are represented.

(2) Choose a random solid cell within the tiled domain as the
starting point.

(3) Perform a flood fill to explore all reachable solid cells. The
fill wraps at the domain boundaries, mimicking the effect
of infinite periodic tiling, and continues until no further
material can be reached.

A design passes the verification check if the flood fill reaches
all solid cells in the tiled domain. These structures are considered
strongly connected and are retained for the dataset.

Candidate design 2x2 tiling Select random point Flood fill

Globally connected
(| [T

Not globally connected

Figure 3: A valid microstructure exhibits global connectivity,
remaining strongly connected after 2 X 2 tiling and flood fill
(top). Removing a single pixel yields a design that maintains
local connectivity but fails the verification procedure (bot-
tom).

Using this two-stage pipeline, growth followed by verification,
we generate a dataset of 100,000 distinct microstructure designs on
a 32 x 32 grid (Figure 1). If a valid sample cannot be found within
1000 attempts for a given target number of filled cells m, we resam-
ple m. We discard duplicate designs using a hash of each binary
pattern. The process is trivially parallelizable and supports efficient
large-scale sampling. Figure 4a shows our dataset covering a wide
range of effective stiffness values, spanning four orders of magni-
tude in relative Ex across the density range. The number of valid
microstructures drops off sharply near the theoretical minimum
density as these structures leave little room for random deviations,
while the rest of the distribution is approximately uniform.
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3.2 Homogenization

Simulating the complete heterogeneous microstructure for every
load case is prohibitively expensive. Homogenization offers a prac-
tical alternative by replacing the complex, spatially varying elastic
behavior with an equivalent, uniform approximation that captures
the material’s average response.

In a heterogeneous linear-elastic material, the local stiffness
tensor C(x) relates the infinitesimal strain

e(x) = %(Vu(x) +Vu(x)T)
to the stress o (x) via
o(x) = C(x) : &(x),

where u(x) is the displacement field. In 2D Voigt notation, this
reads

o1 Ci1 Crz Ci3||en
o22| =|C12 Caz Ca3|| €22
012 Cizs  Caz  Cs3| 2612

C11 and Cyp correspond to axial stiffness in the x- and y-directions,
respectively. C33 represents shear stiffness, and Cy2, C13, and Co3
represent coupling terms.

C(x) exhibits sharp discontinuities between solid and void re-
gions in the microstructure domain, leading to highly heteroge-
neous stress-strain relationships. Homogenization aims to approx-
imate such materials with a constant, effective stiffness tensor C,
such that the average stress under any macroscopic strain £ satisfies

(o) = Cg,
where (-) denotes the volume average over the unit cell Q.

We adopt the standard periodic-cell homogenization approach
following Andreassen and Andreasen [2014], involving three main
steps:

(1) Prescribe three independent macroscopic strain fields g

(in Voigt form)

e =[100]7, @ =[0107T, % =[001],

corresponding to uniaxial strain in x, uniaxial strain in y,
and pure shear strain, respectively.

(2) For each macroscopic strain, solve the boundary value prob-
lem for the corresponding fluctuation displacement field
i (x):

v(qw@®+ﬂW@U:omQ
al® (x) is periodic on 9Q.

Here, () (x) is the strain of the fluctuation field. The fluctu-
ation field accounts for local deviations from the imposed
macroscopic strain due to material heterogeneity. While peri-
odic boundary conditions eliminates all rigid-body rotations
and non-uniform translations, the fluctuation field remains
ambiguous up to a global constant shift. We therefore fix
all displacement components at a single node to anchor the
system and ensure uniqueness.
(3) Compute the homogenized stiffness tensor

A= L[ a0 420 ()T e (60) 4 2D
Cij |Q|,/Q(£ +&Vx)TCx) (Y +&Y) (x))dv,
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where |Q| is the unit cell area.

We use eight-node quadrilateral elements for each
grid cell, avoiding the need for meshing. Solid pixels Undeformed
are modeled as linear isotropic materials under plane
strain conditions, with a Young’s modulus E = 2100 E
MPa and Poisson’s ratio v = 0.39, corresponding to o
Formlabs Tough 2000 resin [Decker et al. 2023; Form-
labs 2025]. Void pixels are assigned a stiffness value
10710 times the stiffness of solid pixels to maintain
numerical stability during solves. Figure 4b shows the
Ashby plot of the dataset’s homogenized properties. E
We enforce periodic boundary conditions by cou-
pling degrees of freedom on opposing edges. The
global stiffness matrix is assembled using Eigen in E
C++, and each linear system is solved using an LDLT
factorization. On our hardware, the solve time per mi-
crostructure is approximately 2.2 seconds. Incorporating optimized
GPU solvers [Zhang et al. 2023b] could further improve simulation
times.

(@)

4000
Minimum density

3000 1

2000 1

Count

1000

0
0.00 0.50
Density

Relative F,.

2x 107! 3x1070 4x 107! 6x 107" 1(')0
Density

Figure 4: (a) Distribution of volume fractions across dataset
samples. While coverage is approximately uniform for most
densities, the count drops off sharply near the theoretical
minimum since such designs are hard to achieve stochasti-
cally. (b) Ashby plot of relative x-directional Young’s mod-
ulus versus density showing that our dataset spans over
four orders of magnitude in stiffness across the full den-
sity range. Color-framed insets highlight representative mi-
crostructures at different density—stiffness regimes.
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3.3 Data Augmentation

We augment our dataset by exploiting the inherent symmetries of
periodic, grid-based microstructures (Figure 5). These symmetries
fall into two categories:

¢ Invariances, where a transformation leaves the homoge-
nized stiffness tensor C unchanged.

e Equivariances, where C transforms in a predictable, structure-
preserving way.

By applying these transformations on the fly during training, we
expose the model to a wider variety of patterns and orientations
without requiring additional FEM solves.

3.3.1 Translation Invariance. Because each microstructure is de-
fined as a periodic unit cell, any integer grid shift results in the same
effective properties. Let p € {0, 1}32*32 denote the binary material
layout. For any offset a, b € {0, ...,31}, the translated design

P,’-j = P(i+a) mod 32,(j+b) mod 32

satisfies C’ = C. This translation gives 1024 invariances per sample.

Reflection Rotation Translation

Cy Cin O Cn G — Cis| | Ca Cp  — Chs Cn Gy Cig
ql 2 QZZ C:Z.‘f Clz CEQ 77( '2-5 CiZ (1 1 77( ’] 3 Q] 2 C:QZ (jﬂx
Ciz Oy O —Ciy —Co O || -Co —Cis O Ciz Oy O

Figure 5: A base microstructure and its transformed variants
via reflection, rotation, and translation. Each transformation
corresponds to a specific change (or invariance) in the ho-
mogenized stiffness tensor C. Reflections and 90° rotations
induce signed permutations of the tensor components, while
periodic translations leave C unchanged.

3.3.2 Rotation and Reflection Equivariance. Unlike translations,
which leave the homogenized tensor C unchanged, rotations and
reflections modify the orientation of material features, causing C
to transform predictably.

We restrict our symmetry operations to rotations by 90° intervals
and reflections about principal axes. These transformations form
the 2D dihedral group D4, which includes:

e rotations a¥ by 90° x k (for k = 1,2,3),
e and reflections b, ba, ba?, ba> across vertical, diagonal, and
horizontal axes.

We use these transformations because they are grid-aligned and
can be applied exactly to binary images without interpolation or
aliasing.

Given a transformation matrix R € R2%2, the full fourth-order
stiffness tensor transforms as:

Crunop = RimRjnRioRipCijk-

This expression induces a signed permutation of entries in the
homogenized Voigt-form tensor:
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o Reflection about the y-axis (b):
Ci3 = —C3,
Ca3 > —Ca3.

e Counterclockwise rotation by 90° (a):

C_‘ll < C_‘22,
C_13 = —C_z3,
Cz3 [ d —613.

Combining 1024 periodic translations with eight rotation/reflection
variants gives 8192 symmetry-derived versions of every microstruc-
ture. Thus, our dataset expands to over 8 x 108 samples. We imple-
ment this augmentation stochastically during training: a random
symmetry transformation is applied to both the design and its label
at each batch. This strategy exposes the network to diverse inputs
while preserving physical and geometric consistency.

3.4 Surrogate Neural Network

To eliminate the computational bottleneck of finite element ho-
mogenization, we train a data-driven surrogate model to predict
effective material properties from binary microstructures. Specif-
ically, we learn a mapping f : {0, 1}32%32 — RO that predicts the
six independent components of the homogenized stiffness tensor:

f(p) = ¢ =[C11,C2,C33,C12,C13,Ca3] 7.

To improve numerical conditioning during training, we apply a
transformation to each component of &. For the diagonal terms Cjj,
which are always non-negative, we apply a standard logarithmic
transform log(1 + Cj;). For the off-diagonal terms C;j, which may
be negative, we use a sign-preserving log transform log(1 + |C;;|) -
sign(C;;j). Each transformed component is then standardized to
have a mean of zero and a variance of one using statistics computed
over the training set.

Figure 6 illustrates the structure of our CNN, comprising two
components: a convolutional feature extractor and a multilayer
perceptron (MLP) regressor.

In the feature extractor, the binary input is first extended with
6 pixels of periodic padding on each side. This padding ensures
that the first convolutional layer correctly accounts for the periodic
boundary conditions of the microstructure. The padded input then
passes through six convolutional blocks with Swish activations [Ra-
machandran et al. 2017]. Every second block applies stride-2 down-
sampling, reducing spatial resolution while increasing channel ca-
pacity. The final feature map is flattened and passed to an MLP
consisting of three hidden layers (each of width 256) with Swish
activations. The last linear layer outputs the six predicted stiffness
components.

4 Results
4.1 Training

We train the surrogate network using a mean squared error (MSE)
loss between predicted and simulated homogenized stiffness ten-
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Figure 6: The architecture of our surrogate convolutional
neural network (CNN). A binary 32 X 32 microstructure is
first periodically padded (orange), then passed through a
series of convolutional layers with Swish activations (blue),
with downsampling every second block (blue). The resulting
feature map is flattened and fed into a multilayer perceptron
with three hidden layers (red), culminating in a linear output
layer (purple) that predicts the six independent components
of the homogenized stiffness tensor.

While prior work has explored incorporating physics-based loss
terms for hyperelastic materials, such as strain energy density [Han
et al. 2024; Li et al. 2023], we found that such additions offered
no meaningful improvement in accuracy or generalization for our
linear-elastic dataset. As a result, we use the simplest possible
formulation: direct regression via MSE.

We train the network using the Adam optimizer [Kingma and
Ba 2017] with a learning rate of 1e™%, a batch size of 64, and early
stopping based on the validation loss over 1000 epochs. We split
the dataset into 90% training, 5% validation, and 5% test sets. Data
augmentations (Section 3.3) are applied randomly per batch during
training. Our implementation is in PyTorch [Paszke et al. 2019],
with training completed in approximately 1.5 hours on a MacBook
M1, and inference requiring approximately 15 ms per sample.

To contextualize prediction errors, we report RMSE values as a
percentage of the base material modulus (2100 MPa). On the held-
out test set, the network achieves an RMSE of 38.8 MPa, or a relative
error of 1.8%, and exhibits a high correlation with the simulated
results. Figure 7 shows parity plots comparing CNN predictions and
FEM-computed values for each independent stiffness component.
The model achieves excellent accuracy across all terms, with R?
values above 0.99 for the major components (Cy1, C22, C33, and C12)
and slightly lower but still strong agreement on the off-diagonal
shear coupling terms (Cy3 and Ca3).

To assess the surrogate’s ability to generalize beyond the training
distribution, we evaluate its performance on four structured mi-
crostructures that differ substantially from the random walk-based
dataset (Figure 8): A truncated square grid, an H-shaped cutout, a
perforated layout with circular voids, and a fractal pattern. These
designs reflect the structured geometries commonly encountered
in topology-optimized or analytically derived materials.



Random-Walk Microstructures for Differentiable Topology Optimization
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Figure 7: Parity plots comparing neural network predictions
and FEM-computed stiffness tensor components from the
test set.

The truncated square, perforated, and H-shaped designs exhibit
relative errors of 2.4%, 2.3%, and 4.2%, respectively, comparable to
or slightly above the test set average. The fractal pattern yields a
larger error of 16.5%, likely due to its sharp corners and thin fea-
tures, which are underrepresented in the training distribution. De-
spite this, all designs show strong agreement with FEM predictions,
demonstrating the surrogate’s ability to generalize meaningfully
beyond the random-walk distribution.

Perforated Fractal

Truncated square H

()

Nearest r
Neighbor

Figure 8: Four structured microstructures (top) used to as-
sess the surrogate model’s ability to generalize beyond the
training distribution. Each is paired with its nearest neighbor
from the training set based on Hamming distance (bottom).
The dashed box indicates the base unit cell before tiling.

4.2 Topology Optimization

Our TO framework seeks to identify a binary material layout p;; €
{0, 1} that minimizes a mechanical performance objective J (p)
while adhering to physical constraints.

Direct optimization over binary designs leads to a highly non-
convex combinatorial problem. A common workaround is to relax
the design domain to continuous densities p;; € [0, 1] and then
apply filtering, penalization, or projection to steer the solution to-
ward binary values. While effective, gradient-based optimization
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methods introduce nontrivial heuristics and require access to simu-
lation derivatives, i.e., the sensitivity of the effective stiffness tensor
to changes in the density field:

oJ g oC

ap  aC ap’
Computing g—g typically requires differentiating through the FEM
pipeline using adjoint methods, which can be complex to implement
and expensive to evaluate.

Our surrogate model enables efficient and straightforward gradient-
based optimization (Figure 9). Because the network f is fully dif-
ferentiable, the sensitivity g—f ~ g_c is obtained automatically via
backpropagation. This allows us to define objectives in terms of
the predicted stiffness tensor and optimize directly using standard
deep learning optimizers.

Although the surrogate is trained on binary microstructures, we
optimize over a continuous density field. To reconcile this, we use
a straight-through estimator (STE):

e During the forward pass, each pixel is thresholded at 0.5 to

?Ji'nary — l[p;:jgnt >=0.5]).
e During the backward pass, gradients are propagated through
the continuous field as if the thresholding were the identity

function.

produce a binary image (i.e. p

To ensure valid pixel values, we apply a sigmoid activation to con-
strain the density field to the range [0, 1]. The STE lets us maintain
continuous optimization’s expressive power and stability while
producing valid binary layouts compatible with our surrogate’s
training distribution.

Surrogate
CNN
pbinary N @
T Build TO
STE Topology optimization loop objective

pcont < @

Adam + Backprop

Figure 9: In our topology optimization (TO) loop, a continu-
ous density field p°™ is passed through a straight-through
estimator (STE) to produce a binary microstructure pP"ry,
The binary layout is evaluated by the surrogate CNN, which
predicts the homogenized stiffness tensor C. We assemble
the total TO loss L1¢ using C and regularizers. Adam uses
the gradients from backpropagation to update p®°™t, closing

the loop.
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4.2.1 Objective Functions. We evaluate the performance of our
surrogate in TO using two objectives. The first objective promotes
overall isotropic stiffness by maximizing the directional moduli in
both x- and y-directions:
Jiso (Pbmary) =11+ S22,

where § = C~! is the homogenized compliance tensor reconstructed
from the surrogate output C = f(pP™2Y) Here, §1; = 1/Ex and
S22 = 1/E represent the inverse of the Young’s moduli along the
x and y directions, respectively. Although 5, does not explicitly
enforce Ex = E, maximizing the sum of both directional stiffnesses
naturally drives the design toward layouts where neither direction
is sacrificed, encouraging a near-isotropic response.

The second objective encourages directional stiffness anisotropy.
We define a soft constraint that penalizes deviations from a target
ratio Ex/Ey = 3:
binary) — l(ﬁ _ 3)2'

2\811
This objective encourages designs that are three times stiffer along

the x-axis than the y-axis without requiring explicit directional
filtering or symmetry constraints.

nI)rtho (P

4.2.2  Density Penalty. To constrain material usage during opti-
mization, we add a quadratic penalty that encourages the design to
match a target volume fraction d € [0, 1]. The density regulariza-
tion term is:
1 22 )
binaryy _ - nary
Ra(pP™) = Aa 55 2 ey =)
i=1 j=1

where 1; € R is a user-defined weight that controls the strength of
the penalty for deviating from the target density.

4.2.3 Smoothness Penalty. Although the surrogate is trained only
on valid, globally connected microstructures, the optimization pro-
cess may still yield disconnected or noisy artifacts when starting
from continuous densities. To suppress such patterns and promote
cleaner designs, we introduce a smoothness regularizer inspired by
discrete Laplacian energy. Let x denote the 3 X 3 Laplacian kernel
over the Moore neighborhood:

1 1
k=[1 -8 1
1 1

cont

We apply this kernel to the continuous density field p
periodic padding and define the smoothness penalty as:

using

32 32

A
ty _ S ty2
Rs(pcon) = E E (x *pcon 2

i=1 j=1
where A5 € R is a user-defined weight that controls the strength of
smoothing in the design.

4.24 Implementation. The final loss is defined as the sum of the
objective function, the density penalty, and the smoothness penalty:

Lo = J(pbinary) + Rd (pbinary) + RS (pcont).

We use the Adam optimizer to minimize this loss for each objec-
tive across target densities d € {0.5,0.6,0.7,0.8} (Figure 10). The
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continuous density field is initialized to p*°® = 0, which becomes

a uniform density of 0.5 after applying the sigmoid activation.

For the isotropic stiffness objective Jiso, we run the optimization
for 10000 epochs. The regularization weights are linearly annealed
over time: Ay : 0.01 — 1000 and As : 1 — 1000. For the orthotropic
stiffness objective Jy;tho, We run the optimization for 1000 epochs
with more aggressive smoothness regularization early on: A5 :
0.01 — 1000 and Ag : 100 — 1000.

Density: 0.5 Density: 0.6 Density: 0.7 Density: 0.8
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Figure 10: Optimized microstructures from the surrogate-
based TO pipeline at varying target densities (0.5, 0.6, 0.7, and
0.8). The relative directional Young’s moduli are reported be-
low each structure. Designs that targeting anisotropy Ex/E, =
3 are shown in the top row while designs that maximize

isotropic stiffness Ex/E, = 1 are shown in the bottom row.

4.3 Fabrication

We fabricate all eight optimized microstructures from the topology
optimization results. To prepare each design for printing, we devel-
oped a post-processing pipeline that converts the binary unit cell
into a watertight, printable mesh (Figure 11).

Starting with the binary design, we tile the unit cell in the plane
(6 repetitions in both x- and y-directions) to produce a periodic
structure. To mitigate aliasing and jagged edges caused by the
discrete grid, we apply Gaussian smoothing to a 2X upsampled
version of the tiled image. We then extract the 0.5 level set of the
smoothed field, yielding a clean, closed boundary curve. This 2D
shape is triangulated and extruded to a fixed thickness, producing
a solid 3D mesh suitable for fabrication.

All samples are printed using a Formlabs Form 3+ stereolithogra-
phy (SLA) printer with Tough 2000 resin (Figure 12). Each fabricated
sample has final dimensions of 50mm X 50mm X 12.5mm. To ob-
tain experimental measurements of the directional Young’s moduli,
we perform uniaxial compression testing using an Instron 5965
universal testing machine in both axial directions (Figure 13). The
resulting stress—strain data is used to estimate a Young’s moduli ra-
tio, which we compare against predictions from both the surrogate
and full FEM simulation.

We observe good agreement across all three sources, confirming
that our optimized designs not only meet their anisotropy targets
in simulation but also translate accurately to physical behavior.
The largest deviation occurs for the orthotropic design at density
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Figure 11: Starting from a binary design, the structure is tiled,
smoothed, converted to a level-set boundary, triangulated,
and extruded to produce a printable model. The final sample
is fabricated in Tough 2000 resin using stereolithography
(SLA) printing.

d = 0.5, where the printed structure is extremely sparse, amplifying
fabrication and testing noise. Additionally, we note that simulation
results at lower densities (e.g., d = 0.5 and d = 0.7) underesti-
mate the target anisotropy, suggesting that high anisotropy is more
challenging to realize in sparse structures with limited topological
expressivity.

Density: 0.5 Density: 0.6 Density: 0.7 Density: 0.8

o

Il N

\Lﬂm N N
= N N
X N \
_ NS A\ N\
Il L] "
\Lq)'

3

[I3)

=

53

(&)

Figure 12: To perform experimental measurements on the
directional Young’s moduli, we fabricate each design from
Figure 10 following the procedure outlined in Figure 11.

4.4 Ablation Study: Optimizer Choice

We obtain our main results with Adam, but in principle, any opti-
mizer can drive the TO loop. To test robustness, we repeated the
TO run at target density d = 0.6 using stochastic gradient descent
(SGD), RMSprop [Graves 2014], and Adadelta [Zeiler 2012] with
identical learning-rate schedules (Figure 14).

Adam and SGD both converge to fabricable designs with compa-
rable final losses. SGD reaches a slightly lower value but requires
approximately 5X more iterations. Adadelta minimizes the loss
most aggressively yet produces a porous layout full of sub-pixel
holes, illustrating that loss reduction alone is an insufficient quality

SCF 25, November 20-21, 2025, Cambridge, MA, USA

I NN (Ortho) [ NN (Iso)
I Sim (Ortho) =3 Sim (Iso)
4 3 Experiment (Ortho) 3 Experiment (Iso)

0.5 0.6 0.7 0.8
Density

Figure 13: Printed sample undergoing uniaxial compression
in an Instron 5965 mechanical testing machine (left). We com-
pare the directional stiffness ratio Ex/E, across densities for
orthotropic and isotropic design targets shown in Figure 12
(right). Predictions from the surrogate, FEM simulation, and
experimental measurements are plotted. Horizontal lines
depict the target stiffness ratios for each objective.

metric. RMSprop stagnates early and yields the highest loss and
the noisiest geometry. Therefore, we keep Adam as our default,
as it strikes a good compromise between speed, objective value,
and visual and physical plausibility. However, the framework is not
overly sensitive to the choice of optimizer between Adam and SGD.

Adam SGD

0 —— Adam  —— RMSprop
—— SGD

—— Adadelta E 7 i
10714 NN

0] B,/E, =301 B,/E, =301
1\ RMSprop Adadelta

1074

[ ! »
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0 250 500 750 1000  E./E, =311
Epoch
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Figure 14: We conduct an ablation study comparing the Adam,
stochastic gradient descent (SGD), RMSprop, and Adadelta
optimizers used in the surrogate-based TO loop for the
anisotropic objective at a target density of 0.6 over 1000
epochs. Adam and SGD yield clean, fabricable structures with
similar directional performance, whereas Adadelta and RM-
Sprop produce porous, impractical geometries.

5 Limitations and Future Work

We have introduced a data-driven procedure for training a surro-
gate model that predicts homogenized stiffness properties directly
from binary microstructure designs. Unlike prior approaches that
either rely on fixed parametric families, our surrogate enables dif-
ferentiable topology optimization over a nonparametric space of
binary inputs. To train the model, we generate a large dataset of
microstructures using a random-walk growth procedure, ensuring
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structural diversity and periodic connectivity. We evaluate perfor-
mance through a suite of optimization tasks that target directional
stiffness ratios under various volume constraints. The designs ex-
hibit clear anisotropic trends, and physical fabrication followed by
mechanical testing confirms strong alignment between surrogate
predictions, FEM simulation, and experimental behavior. However,
there are also several potential improvements to the framework we
present.

Extension to 3D. While our random walk generator naturally ex-
tends to 3D grids, scaling the full pipeline becomes challenging due
to the increased cost of finite element simulations. As design reso-
lution and physical fidelity grow, the number of degrees of freedom
and independent loading conditions required by homogenization
increases sharply. Efficient surrogate training in such settings may
require multi-resolution modeling or physics-aware dimensionality
reduction.

Hyperparameter Tuning. Our TO procedure depends on manually
tuned schedules for regularization terms such as smoothness and
density penalties. Although surrogate-based optimization enables
rapid iteration, the tuning process remains heuristic and problem-
specific. Future work could automate this process using reinforce-
ment learning (RL) or differentiable hyperparameter optimization.

Fabrication Constraints. Although our designs successfully print
and function as intended, the pipeline does not explicitly account
for printability constraints, such as minimum feature size or printer
resolution limits. Incorporating fabrication-aware constraints could
improve real-world reliability. Additionally, extending this frame-
work to 3D would require addressing constraints such as overhang
and supports.

Global Optimization. While gradient-based methods like Adam are
efficient, they are inherently local and prone to getting trapped
in suboptimal minima, particularly for objectives involving strong
anisotropy or extreme sparsity. Global optimization techniques,
such as Bayesian optimization, RL, or genetic algorithms, offer a
promising alternative by enabling a broader exploration of the de-
sign space. This is especially promising, given recent progress in
scalable, high-dimensional Bayesian optimization methods [Hvarfner
et al. 2024].

Nonlinear and Multiphysics Behavior. Our surrogate and homoge-
nization pipeline is tailored to linear elasticity, but many real-world
applications involve nonlinear, rate-dependent, or coupled multi-
physics responses, such as hyperelastic deformation or electrome-
chanical effects. Extending the method to these regimes would
require more expressive training data and potentially new surro-
gate models that respect underlying physical constraints. Careful
adaptation of data augmentation and boundary conditions would
also be necessary.
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