

**Supporting Information**  
**for**  
**Giant flexoelectricity of additively manufactured polylactic acid**

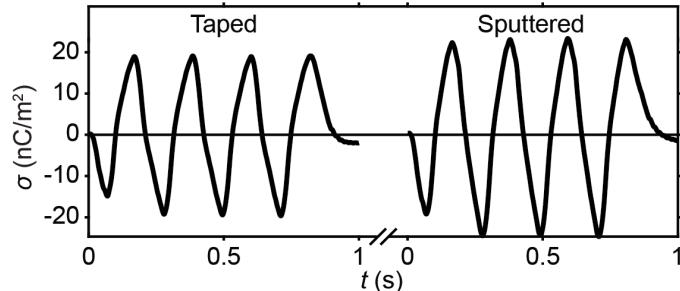
Dylan J. Balter,<sup>a</sup> Colin McMillen,<sup>a</sup> Alec Ewe,<sup>b</sup> Jonathan Thomas,<sup>b</sup> Samuel Silverman,<sup>c</sup> Lalitha Parameswaran,<sup>d</sup> Luis Fernando Velásquez-García,<sup>e</sup> Emily Whiting,<sup>c</sup> Steven Patterson,<sup>f</sup> Hilmar Koerner,<sup>g</sup> Keith A. Brown<sup>a,b,h,\*</sup>

<sup>a</sup>Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA 02215, USA

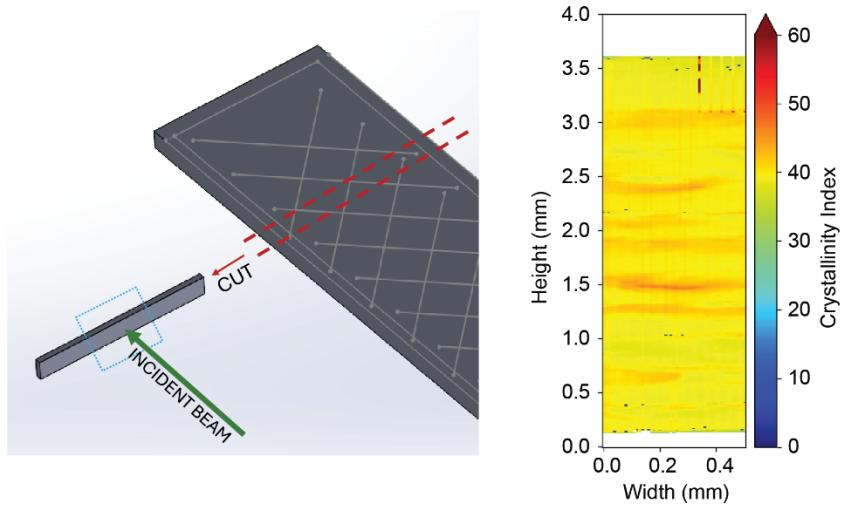
<sup>b</sup>Physics Department, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA

<sup>c</sup>Department of Computer Science, Boston University, 665 Commonwealth Avenue, Boston, MA 02215, USA

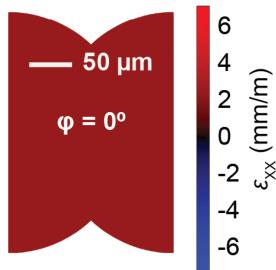
<sup>d</sup>Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street, Lexington, MA 02421-6426, USA


<sup>e</sup>Microsystems Technology Laboratories, Massachusetts Institute of Technology, 60 Vassar Street, Building 39, Cambridge, MA 02139-4307, USA

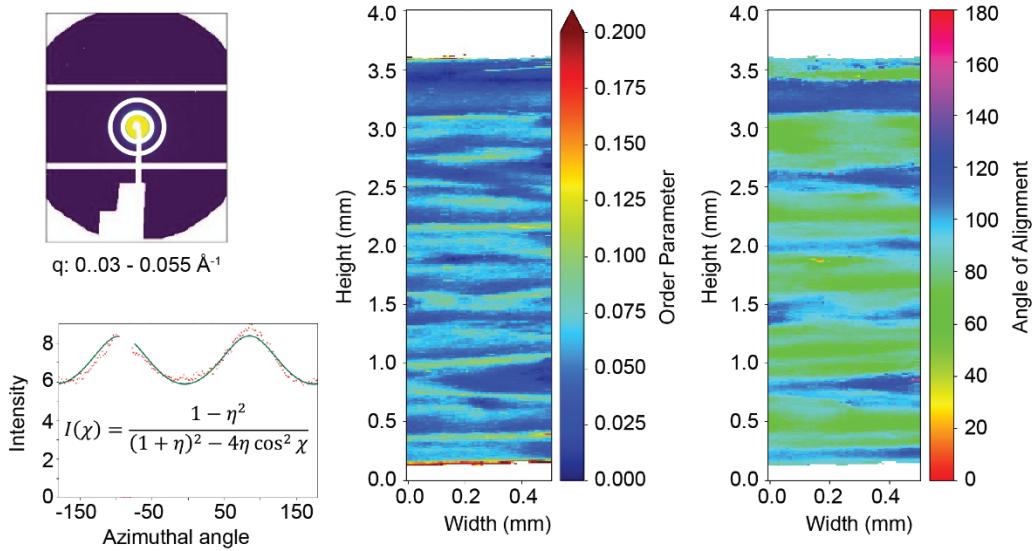
<sup>f</sup>Kansas City National Security Campus, 14520 Botts Road Kansas City, MO 64147, USA


<sup>g</sup>Air Force Research Laboratory, 2941 Hobson Way, Wright-Patterson AFB, OH, USA

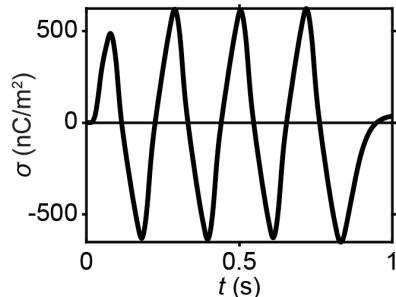
<sup>h</sup>Division of Materials Science and Engineering, 15 St Mary's St, Boston, MA 02215, USA


\*To whom correspondence should be addressed: brownka@bu.edu




**Figure S1.** Surface charge density  $\sigma$  vs. time  $t$  for one sample with taped copper electrodes and another with sputtered copper electrodes. In both cases, the sample is 12 layers with a linear cross-hatched infill in which the first layer was 45°. Sputtered metal films, consisting of an adhesion layer of 10 nm of titanium and 1.5 nm of copper, were deposited consecutively in a Denton Discovery system without breaking vacuum in the sputtering chamber, to prevent formation of a native oxide layer on the titanium adhesion layer.




**Figure S2. XRD to determine overall crystallinity and heterogeneities. Geometry of X-ray direction with respect to sample geometry. A cross section was scanned using microprobe XRD. Crystallinity map using microprobe scanning XRD through a cross section of an annealed 12-layer sample. Crystallinity index was determined according to prior work, and the average crystallinity index of the annealed samples was found to be 42%.<sup>[42]</sup>**



**Figure S3. Finite element analysis of the geometry shown in Figure 3 but evaluating the longitudinal strain  $\varepsilon_{xx}$  in a section of one printed layer with a  $0^\circ$  infill angle under pure tension.**



**Figure S4. XRD to determine overall alignment and heterogeneities. 2D small angle X-ray pattern with marginal anisotropy. Azimuthal intensity distribution within  $q$  range of  $q = 0.03 - 0.055 \text{ \AA}^{-1}$ . Ruland method was used to calculate an order parameter for the anisotropy.<sup>[37]</sup> 2D map of order parameter for 12-layer sample. 2D map of orientation angle of scattering domains.**



**Figure S5.  $\sigma$  vs.  $t$  for samples using the FFF manufacturing parameters found to be most favorable for flexoelectric properties in these samples.**